MOOG

MSD Servo Drive

Ausführungsbeschreibung

Option 2 - Technologie

SSI-Gebersimulation

Ausführungsbeschreibung Option 2 - Technologie

SSI-Gebersimulation

Id.-Nr.: CB08760-002, Rev. 1.5 Stand: 10/2019

HINWEIS: Dieses Dok dingt die Inf

Dieses Dokument ersetzt nicht die Betriebsanleitung. Bitte beachten Sie unbedingt die Informationen über "Maßnahmen zu Ihrer Sicherheit", "bestimmungsge-mäße Verwendung" und "Verantwortlichkeit" die Sie in den Betriebsanleitungen finden. Informationen über Einbau, Installation und Inbetriebnahme sowie zugesagte technische Eigenschaften der MSD Servo Drive Gerätereihe entnehmen Sie den zusätzlichen Dokumenten (Betriebsanleitung, Gerätehilfe, usw.)

Diese Dokumentation gilt für:

Baureihe	Ausführung	Firmware-Version
MSD Servo Drive Einachssystem	G392-xxxx6xxxxx G395-xxx-x6xxxxx	ab V124.25-00 ab V124.25-00
MSD Servo Drive Mehrachssystem	G393-xxx-x6xxxxx G397-xxx-x6xxxxx	ab V124.25-00
MSD Servo Drive Einachs- Servoregler Compact	nicht verfügbar	-

Tabelle V.1 Gültigkeit

Technische Änderungen vorbehalten.

Die Inhalte unserer Dokumentation wurden mit größter Sorgfalt zusammengestellt und entsprechen unserem derzeitigen Informationsstand.

Dennoch weisen wir darauf hin, dass die Aktualisierung dieses Dokuments nicht immer zeitgleich mit der technischen Weiterentwicklung unserer Produkte durchgeführt werden kann.

Informationen und Spezifikationen können zu jederzeit geändert werden. Bitte informieren Sie sich unter drives-support@moog.com über die aktuelle Version.

Inhaltsverzeichnis

1	SSI	Geber Simulation	. 4
	1.1	Leistungsmerkmale	4
	1.2	Steckerbelegung der SSI Geber Simulation	4
2	Verv	wendung der SSI Geber Simulation	. 5
	2.1	Aktivierung der SSI Geber Simulation	5
	2.2	Parameterbeschreibung SSI Geber Simulation	5
	2.3	Hinweise zur Parametrierung der SSI Auflösung	5
	2.4	Parametrierung von Polarität und Phase	6
	2.5	Anfügen eines Paritätsbits	6
	2.6	Verwendung der Synchronisation	6

MOOG

1 SSI Geber Simulation

Diese Dokumentation beschreibt die Technologie-Funktion SSI Geber Simulation der MSD Servo Drive Firmware, die zugehörigen Parameter und gibt Informationen für die Inbetriebnahme.

ACHTUNG:

Weitere Informationen zur Sicherheit, Geräteeinbau, Installation, Anschluss-belegung und Parameterkonfiguration sind der Betriebsanleitung bzw. der Geräte Hilfe des MSD Servo Drive zu entnehmen.

1.1 Leistungsmerkmale

Mit Hilfe der SSI Geber Simulation kann die aktuelle Istposition des vom MSD Servo Drive geregelten Antriebes von einer übergeordneten Steuerung ausgelesen werden. Hierzu stehen verschiedene Quellen zur Auswahl (**P2811**).Der MSD Servo Drive verhält sich dabei gegenüber der Steuerung wie ein SSI Geber (ohne Geberversorgung). Die SSI Geber Simulation verwendet den Technologiekarten-Steckplatz (X8). Die Technologiekarte wird automatisch erkannt.

Ein weiterer Anwendungsfall ist die SSI Geber-Simulation an X8 für einen zweiten MSD Servo Drive (Compact) an X7 (SSI-Umsetzung).

- Parametrierbare Anzahl an Multiturn und Singleturn Bits
- Übertragung mit Binär-Codierung
- Taktraten zwischen 200 kBit/s und 1500 kBit/s werden unterstützt Der MSD Servo Drive ist Takt-Slave und stellt sich auf den Takt-Master ein
- Schnellstmögliche Zykluszeit: 125 µs
- Wahlweise Übertragung mit Paritätsbit (Odd/Even)
- Optionale Synchronisation der Regelung auf den Auslesezyklus
- Darstellung des Synchronisationsstatus
- Geber Monoflopzeit: ~25 µs
- Übersichtliche Parameterstruktur für einfache und schnelle Inbetriebnahme

1.2 Steckerbelegung der SSI Geber Simulation

Pin	Belegung
1	n.c.
2	Reserviert - keine Verbindung zulässig
3	GND
4	CLK-
5	DATA+
6	n.c.
7	n.c.
8	CLK+
9	DATA-

 Tabelle 1.1
 Steckerbelegung der SSI Geber Simulation

2 Verwendung der SSI Geber Simulation

2.1 Aktivierung der SSI Geber Simulation

Wenn Parameter **P 2800** bereits aktiv und gespeichert ist, wird die SSI Geber-Simulation sofort nach einem Gerätestart aktiv.

Soll die Simulation nachträglich gestartet werden, muss Parameter **P 2800** auf 1 gesetzt werden. Anschließend ist mit **P 0149** = START(1) die Geberschnittstellen neu zu initialisieren. Die Regelung darf dazu nicht aktiv sein. Der Parameter **P 2800** befindet sich in der Parametergruppe "Encoder > SSI Encoder Simulation".

2.2 Parameterbeschreibung SSI Geber-Simulation

Die Parameter sind in der Parametergruppe "Encoder > SSI Encoder Simulation" zu finden und besitzen alle das Präfix "TOPT_SSI_".

ID	Parameter	Einheit	Zugriff	Datentyp		Beschreibung
2800	Mode		r/w	UInt16	Aktivierung der SS	Geber-Simulation
					0	nicht aktiv
					1	aktiv
				2 - 4	reserviert	
2801	MultiT	Bit	r/w	UInt16	Anzahl der zu übertragenden Multiturn Bits	
2802	SingleT	Bit	r/w	UInt16	Anzahl der zu übertragenden Singleturn Bits	
2803	Polarity	r/w UInt16 Leerlauf Pegel de		Leerlauf Pegel der	Datenleitung	
					0	Taktleitung ruht auf einem Low- Pegel
					1	Taktleitung ruht auf einem High- Pegel (empfohlen)

Tabelle 2.1 Parameter SSI Geber-Simulation

ID	Parameter	Einheit	Zugriff	Datentyp		Beschreibung
2804	Phase		r/w	Ulnt16	Gibt an bei welcher werden	Taktflanke neue Daten gesetzt
					0	Setzt Daten bei führender Flanke (empfohlen)
					1	Setzt Daten bei folgender Flanke
2805	ParityEnable		r/w	Ulnt16	False(0)	Ohne Paritätsbit (empholen)
					True(1)	Aktivierung des Paritätsbits
2806	ParityType		r/w	Ulnt16	ODD(0)	Ungerade Parität
					EVEN(1)	Gerade Parität
2807	SyncOffset	μs	r/w	Float32	Verschiebung des S Regelungszyklus	Synchronisationssignals zum
2808	SyncUse		r/w	UInt32	Synchronisation au	f den Auslesezyklus
2809	InSync		r	UInt16	False(0)	MSD läuft nicht synchron zum Auslesetakt
					True(1)	MSD hat sich auf den Ausle- sezyklus synchronisiert
2811	TOPT.InOut_ EncSim_Source		r/w	UInt32	Signalquelle für die	SSI-Simulation
					ENCPCON(0)	Position aus Lage vom Lagegeber, ScopeVar(153)
					INV_ ENCPCON(1)	wie (0), aber negiert
					EPSACT(2)	Ist-Position in Inkrementen (P 0412), ScopeVar(42)
					EPSREF(3)	Soll-Position in Inkrementen (P 0413), ScopeVar(40)
					VM(4)	Aufrufzähler der zyklischen Positions-Lockfunktion
					ENCPCON_ normscale(5)	wie (0), aber differenziert und aufintegriert, mit Wirkung des SpeedSigns aus P 2236 MPRO_402_Polarity.Bit6
2820	GrayCode		r/w UInt32 Codierung des zu übertragenden Signals		bertragenden Signals	
					0	Binär-Code (fest eingestellt)

Tabelle 2.1

MOOG

CB08760-002 10/2019

MSD Servo Drive Ausführungsbeschreibung SSI Modul 6

MOOG

CB08760-002 10/2019

ID	Parameter	Einheit	Zugriff	Datentyp		Beschreibung			
2821	Baudrate	kBit/s	r/w	UInt32	SSI Baudrate für di	e Übertragung (hier redundant)			
					0	250 K			
					1	500 K			
								2	750 K
					3	1000 K			
2822	MultiTurnValue		r	UInt32	Aktuell berechnete	r SSI Multiturn-Wert			
2823	SingleTurnValue		r	UInt32	Aktuell berechnete	r SSI Singleturn-Wert			

Tabelle 2.1Parameter SSI Geber-Simulation

2.3 Hinweise zur Parametrierung der SSI Auflösung

Der MSD Servo Drive unterstützt die Übertragung von maximal 32 Positionsbits, die sich beliebig in Singleturn und Multiturn Information aufteilen können. Bei der Erzeugung der SSI-Signale wird die angegebene Quelle aus **P 2811** verwendet.

Wichtig ist bei der Parametrierung, dass die SSI Geber-Simulation beispielsweise nicht mehr Singleturn Bit überträgt, als es der internen Auflösung entspricht, da diese sonst nicht mit Informationen gefüllt werden können. Der Parameter **MPRO_FG_PosNorm** (**P 0270**) bestimmt diese Auflösung. Die Werkseinstellung für diesen Parameter beträgt 1048576, was 2²⁰ entspricht.

Bei Werkseinstellungen rechnet der MSD Servo Drive mit 12 Multiturn und 20 Singleturn Bits. In diesem Falle wäre die Übertragung von mehr als 12 Multiturn Bits nicht sinnvoll, da der Zahlenüberlauf trotz höherer Parametrierung bei dem 12. Bit auftreten würde. Eine Einstellung der Singleturn Bits von höher als 20 wäre dann ebenfalls nicht sinnvoll, da die zusätzlichen Bits stets mit 0 gefüllt würden.

2.4 Parametrierung von Polarität und Phase

Wichtig für den fehlerfreien Betrieb der SSI Schnittstelle ist die korrekte Konfiguration der Polarität, sowie der Phase. Die Einstellung der Polarität ist bestimmt durch den Ruhepegel der SSI Taktleitung. Ruht die Taktleitung auf einem Low-Pegel, so ist der Parameter **TOPT_SSI_Polarity (P 2803)** auf "False" einzustellen. "True" steht für ein Ruhen des Taktpegels auf High. Die Phase gibt an, wann ein neues Bit auf die Datenleitung gelegt wird, und wann dieses dann ausgewertet wird. Bei der Einstellung des Parameters **TOPT_SSI_Phase (P 2804)** auf "False" werden die Daten immer bei der Flanke zurück zum Ruhepegel übernommen. Bei der Einstellung auf "True" werden die Daten bei der Flanke vom Ruhepegel weg übernommen.

Tabelle 2.2 Parametrierung von Polarität und Phase

2.5 Anfügen eines Paritätsbits

Optional kann ein Paritätsbit hinter den Nutzdaten hinzugefügt werden. Das Paritätsbit wird dann nach dem niederwertigsten Bit (LSB) übertragen. Aktiviert wird das Paritätsbit über den Parameter **TOPT_SSI_ParityEnable (P 2805)**. Die Parität kann entweder als "odd" oder als "even" Parität erzeugt. Dies kann über den Parameter **TOPT_SSI_Parity-Type (P 2805)** ausgewählt werden.

2.6 Verwendung der Synchronisation

Bei einer zeitlich äquidistanten Abfrage der SSI Information besteht die Möglichkeit, den Regelungszyklus des MSD Servo Drive auf den Abfragezyklus zu synchronisieren. Die Synchronisation erfolgt auf die erste Taktflanke einer Übertragung. Wichtig ist bei der Verwendung des synchronisierten Betriebes, dass der Auslesezyklus der Steuerung ein ganzzahliges Vielfaches des Drehzahlregelungszyklus ist. Mit der synchronisierten Abfrage kann gewährleistet werden, dass der übergeordneten Steuerung zeitlich äquidistant abgetastete Lagewerte übertragen werden können. Werden mehrere synchronisierte MSD Servo Drive gleichzeitig abgefragt, so würden alle Lageistwerte zum gleichen Zeitpunkt erzeugt.

Die Synchronisation wird aktiviert über den Parameter TOPT_SSI_SyncUse (P 2808). Über den Parameter TOPT_SSI_InSync (P 2809) wird der Status der Synchronisation dargestellt.

CB08760-002 10/2019

Verwendung der SSI Geber Simulation

7

SCHAUEN SIE GENAU HIN.

Moog-Lösungen sind weltweit erhältlich. Weitere Informationen erhalten Sie auf unserer Webseite oder von der Moog-Niederlassung in Ihrer Nähe.

MOOG

Moog GmbH Hanns-Klemm-Straße 28 D-71034 Böblingen Telefon +49 7031 622 0 Telefax +49 7031 622 100

www.moog.com/industrial drives-support@moog.com

Moog ist ein eingetragenes Warenzeichen der Moog, Inc. und ihrer Niederlassungen. Alle hierin aufgeführten Warenzeichen sind Eigentum der Moog Inc. und ihrer Niederlassungen. Alle Rechte vorbehalten.

© 2019 Moog GmbH.

Technische Änderungen vorbehalten.

Der Inhalt unserer Dokumentation wurde mit größter Sorgfalt zusammengestellt und entspricht unserem derzeitigen Informationsstand.

Dennoch weisen wir darauf hin, dass die Aktualisierung dieses Dokuments nicht immer zeitgleich mit der technischen Weiterentwicklung unserer Produkte durchgeführt werden kann.

Informationen und Spezifikationen können jederzeit geändert werden. Bitte informieren Sie sich unter drives-support@moog.com über die aktuelle Version.

Id.-Nr.: CB08760-002, Rev. 1.5

Stand: 10/2019

Die deutsche Version ist die Originalausführung der Betriebsanleitung