MSD Servo Drive

Benutzerhandbuch

Feldbussysteme CANopen und EtherCAT

Einachssystem Mehrachssystem Einachs-Servoregler Compact

In dieser Dokumentation ist die Funktionalität für folgende Geräte beschrieben:

MSD Servo Drive Einachssystem MSD Servo Drive Mehrachssystem MSD Servo Drive Compact

MSD Servo Drive Benutzerhandbuch Feldbussysteme CANopen und EtherCAT

Id.-Nr.: CA65647-002

Stand: 03/2020

Die deutsche Version ist die Originalausführung des Benutzerhandbuches.

Technische Änderungen vorbehalten

Der Inhalt unserer Dokumentation wurde mit größter Sorgfalt zusammengestellt und entspricht unserem derzeitigen Informationsstand.

Wir weisen darauf hin, dass dieses Informationsprodukt nicht immer zeitgleich mit der technischen Weiterentwicklung unserer Geräte aktualisiert wird.

Informationen und Spezifikationen können jederzeit geändert werden. Bitte informieren Sie sich unter drives-support@moog.com über die aktuelle Version.

Inhaltsverzeichnis

1	Allg	emeine	e Informationen7
	1.1	Zielgrup	оре7
	1.2	Vorauss	setzungen7
	1.3	Mitgelte	ende Dokumentation7
	1.4	Piktogra	amme für nützliche Informationen8
	1.5	Haftung	gsausschluss
	1.6	Transpo	ort, Lagerung
	1.7	Entsorg	jung8
	1.8	Helpline	e/Support & Service
	1.9	Normat	ive Referenzen9
2	Sich	nerheit	
	2.2	Maßnał	nmen zur Sicherheit
	2.3	Allgeme	eine Sicherheits- und Warnhinweise12
		2.3.1	Sicherheitshinweise zur vorliegenden Dokumentation
	2.4	Wichtig	e Informationen
3	Ger	ätebes	chreibung
		3.1.1	CANopen Funktionalität des MSD Servo Drive
		3.1.2	Systemvoraussetzungen CANopen13
	3.2	Feldbus	ssystem EtherCAT
		3.2.1	Das EtherCAT Protokoll
		3.2.2	EtherCAT Funktionalität des MSD Servo Drive 14
		3.2.3	Systemvoraussetzungen EtherCAT 14
	3.3	Weiterfi	ührende Dokumentation

4	Mor	ntage u	IND Anschluss des Feldbussystems CANopen	15
	4.2	Anschlü	isse und Bedienelemente	16
	4.3	Leuchto	lioden - Blink-Codes des Feldbus-systems	16
	4.4	Adressv	vergabe CANopen (Node-ID)	16
		4.4.1	Adressvergabe über die Software CAN-Adresse	17
		4.4.2	Adressvergabe über DIP-Schalter (S4)	17
		4.4.3	Adressvergabe über die Kombination aus Software CAN-Adresse des Servoreglers und des DIP-Schalters (S4, Hardwareadresse)	18
	4.5	Pinbele	gung der Klemme X32	18
	4.6	Installat	ion des Feldbussystems CANopen	19
		4.6.1	Systemanschluss des Feldbussystems CANopen	19
		4.6.2	Spezifikation des Feldbussystems CANopen	19
		4.6.3	Übertragungsgeschwindigkeiten des Feldbussystems CANopen (Baudraten)	20
		4.6.4	Installation des Feldbussystems CANopen	20
		4.6.5	Hardwarefreigabe	20
	4.7	Gerätez	ustand des Servoreglers	21
5	Mor	ntage u	Ind Anschluss des Feldbussystems EtherCAT	23
	5.2	Anschlü	isse und Bedienelemente	24
	5.3	Leuchto	lioden - und Blink-Codes des Feldbussystems	24
		5.3.1	MSD Servo Drive (Einachs- und Mehrachsregler)	24
		5.3.2	MSD Servo Drive Compact	25
		5.3.3	ERROR Indikator MSD Servo Drive und MSD Servo Drive Compact	26
	5.4	Pinbele	gung der RJ45 Buchse	26
	5.5	Installat	ion des Feldbussystems EtherCAT	27
		5.5.1	Systemanschluss des Feldbussystems EtherCAT	27
		5.5.2	Hardwarefreigabe	27
	5.6	Gerätez	ustand des Servoreglers	28

6	Inbe Felc	etriebna Ibussys	ahme und Konfiguration des stems CANopen	29
	6.2	Elektron	isches Gerätedatenblatt – EDS-Datei	29
	6.3	Inbetriek	onahme und Konfiguration	30
		6.3.1	Ablauf der Inbetriebnahme und Konfiguration	30
	6.4	CANope	en-Betrieb über die implementierte CiA402-Funktion des Servoreglers	30
		6.4.1	Auswahl der Betriebsart (Modes of operation)	30
		6.4.2	Timing-Parameter einstellen	31
	6.5	CANope	en-Konfiguration	31
		6.5.1	Softwareadresse und Baudrate über den Moog DriveAdministrator einstellen.	31
		6.5.2	Inbetriebnahmehinweise	32
		6.5.3	Systemtest an der Steuerung (CANopen-Master)	32
		6.5.4	Parametereinstellung speichern	32
		6.5.5	Parametereinstellungen auf Werkseinstellung zurücksetzen	33
7	Inbe Felc	etriebna Ibussys	ahme und Konfiguration des stems EtherCAT	35
	7.2	ESI (xml) – Gerätebeschreibungsdatei	35
	7.3	Inbetriek	onahme und Konfiguration	35
	7.4	EtherCA	T-Betrieb über die implementierte CiA402-Funktion des Servoreglers .	36
		7.4.1	Auswahl der Betriebsart (Modes of operation)	36
		7.4.2	Timing-Parameter einstellen	37
	7.5	EtherCA	T-Konfiguration	37
		7.5.1	Inbetriebnahmehinweise	37
		7.5.2	Systemtest an der Steuerung (EtherCAT-Master)	37
		7.5.3	Parametereinstellung speichern	38
		7.5.4	Parametereinstellungen auf Werkseinstellung zurücksetzen	38

7.6	6 Ethernet over EtherCAT (EoE)		
	7.6.1	Anwendungsfall I: Moog DriveAdministrator 5 auf Service PC installiert	
	7.6.2	Anwendungsfall II: Moog DRIVEADMINISTRATOR 5 auf EtherCAT Master PC installiert	
Par	ametrie	eren der Geräte - CANopen	
	8.1.1	CAN-Kommunikationsdienste im CiA301 Profil	
	8.1.2	Communication objects und Objektverzeichnis des CiA301 Profils 43	
8.2	Parame	terkanal (Service data objects)	
	8.2.1	Parameterdatentypen	
	8.2.2	Datentypen im Steuerprotokoll	
	8.2.3	Geräteparameter	
	8.2.4	Beispiel: Lesezugriff auf den Geräteparameter des Datentyps "String", Parameter 3 DV_DeviceAliasName47	
	8.2.5	Parameterdatensatz-Download mit CANopen	
8.3	Prozess	daten (PDO)	
	8.3.1	Prozessdaten (PDO) - Transmission Types	
	8.3.2	PDO-Mapping	
	8.3.3	Mapping-Hinweise51	
8.4	Heartbe	eat-Funktion	
	8.4.1	Konfiguration der Fehlerkontrollmechanismen51	
	8.4.2	Heartbeat	
8.5	Telegrar	mmausfall Überwachung	
Par	ametrie	eren der Geräte - EtherCAT55	
9.2	2 EtherCAT-Netzwerkmanagement (NMT)57		

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT

10	Implementierte CiA402-Funktionalität des Servoreglers59			
		10.1.1	Allgemeine Information	59
		10.1.2	Zustandsmaschine	60
		10.1.3	Schema DRIVE COM Zustandsmaschine	60
		10.1.4	Bitkombinationen der Zustandsmaschine im Statuswort 6041h	62
		10.1.5	Bitkombinationen der Steuerbefehle für die Zustandsübergänge - Steuerwort 6040h	63
	10.2	Option o	codes	63
	10.3	Einheite	n und Normierung, Factor Group	64
		10.3.1	Objekte der Factor Group gemäß CiA402:	64
		10.3.2	Berechnung der wichtigsten Factor Group Parameter	65
	10.4	E/A-Abb	bild	66
		10.4.1	Objekt 60FDh – Digitale Eingänge	66
		10.4.2	Objekt 2079h – MPRO_INPUT_STATE	67
		10.4.3	Objekt 208Fh – MPRO_OUTPUT_STATE	67
		10.4.4	Digitale Ausgänge über Feldbus setzen	68
		10.4.5	Objekt 60FE - Digitale Ausgänge	68
11	Betr	rieb des	s MSD Servo Drive Servoreglers über CiA402	69
	11.2	Interpoli	eren der Sollwerte	69
	11.3	Steuerw	/ort	69
		11.3.1	Objekt 6040h-Steuerwort	69
		11.3.2	Statuswort	71
12	Beti	riebsart	ien	73
	12.2	Betriebs	arten mit Profilgenerierung im Servoregler	73
		12.2.1	1 Profile position mode	73
		12.2.2	2 Velocity mode (U/F Betrieb)	76
		12.2.3	3 Profile velocity mode	77
		12.2.4	Homing mode	78

12.3	Zyklisch	ne Betriebsarten, Profilgenerierung in der Steuerung	
	12.3.1	7 Interpolated position mode	
	12.3.2	8 Cyclic synchronous position mode (nur EtherCAT)	
	12.3.3	9 Cyclic synchronous velocity mode (nur EtherCAT)	
	12.3.4	10 Cyclic synchronous torque mode (nur EtherCAT)	
12.4	Externe	Geschwindigkeits-/Drehmoment Vorsteuerung	
"Em	nergena	cy messages"	
13.2	Fehlerq	uittierung	
13.3	Fehlerq	uittierung über das Feldbussystem	
13.4	Fehlerq	uittierung über den Moog DriveAdministrator	
Tecl	hnolog	iefunktionen	
	14.1.1	Touch Probe Implementierung nach CiA402	
	14.1.2	Herstellerspezifische Touch Probe Implementierung	
14.2	Rundtis	chfunktion	90
Wei	terführe	ende Dokumentation	91
Glos	ssar		
	12.4 "Em 13.2 13.3 13.4 Tecl 14.2 Wei	12.3.1 12.3.2 12.3.3 12.3.4 12.4 Externed 3.2 Fehlerq 13.3 Fehlerq 13.4 Fehlerq 13.4 Fehlerq 13.4 Fehlerq 13.4 Fehlerq 14.1.1 14.1.2 14.2 Rundtis Weiterführ	12.3.1 7 Interpolated position mode. 12.3.2 8 Cyclic synchronous position mode (nur EtherCAT) 12.3.3 9 Cyclic synchronous velocity mode (nur EtherCAT) 12.3.4 10 Cyclic synchronous torque mode (nur EtherCAT) 12.3.4 10 Cyclic synchronous torque mode (nur EtherCAT) 12.4 Externe Geschwindigkeits-/Drehmoment Vorsteuerung 12.4 Externe Geschwindigkeits-/Drehmoment Vorsteuerung 13.2 Fehlerquittierung

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 6

1 Allgemeine Informationen

Die Produkt-CD der Moog enthält die komplette Dokumentation die zur jeweiligen Produktreihe gehören. Zur Dokumentation einer Produktreihe gehören Betriebsanleitung (Hardware-Beschreibung), Geräte Hilfe (Softwarebeschreibung) sowie weitere Benutzerhandbücher (z.B. Feldbus-Beschreibung) und Ausführungsbeschreibungen. Sie stehen in den Formaten PDF, HTML oder chm zur Verfügung.

1.1 Zielgruppe

Liebe Anwenderin/lieber Anwender

Das Benutzerhandbuch ist Bestandteil des Produkts und enthält wichtige Hinweise zum Betrieb und Service. Das Benutzerhandbuch wendet sich an alle Personen, die Montage-, Installations-, Inbetriebnahme- und Servicearbeiten am Produkt ausführen.

1.2 Voraussetzungen

Voraussetzungen im Umgang mit den Feldbussystemen CANopen und EtherCAT:

- Die Dokumente zu den Geräten sind leserlich zugänglich.
- Lesen und verstehen Sie zuerst die Betriebsanleitung Ihres Antriebssystems.
- Sie sind durch Schulungen mit den Feldbussystemen CANopen und Ether-CAT vertraut.

Die Beachtung der Dokumente zu den Geräten der Moog ist Voraussetzung für einen störungsfreien Betrieb und damit die Erfüllung eventueller Mängelhaftungsansprüche.

HINWEIS:

Dieses Benutzerhandbuch ist gültig für das MSD Servo Drive Einachs- und Mehrachssystem und dem MSD Servo Drive Einachs-Servoregler Compact (im folgenden MSD Servo Drive und MSD Servo Drive Compact genannt). Dieses Dokument ersetzt nicht die Betriebsanleitungen MSD Servo Drive und MSD Servo Drive Compact.

1.3 Mitgeltende Dokumentation

Dokument	Inhalt	ldNr. Format
MSD Servo Drive Einachs- Servoregler Compact- Betriebsanleitung	Sicherheit, Geräteeinbau, Installation, Inbetriebnahme, Diagnose, Spezifikationen, Zertifizierungen und geltende Normen, Technische Daten	CA97555-002 PDF
MSD Servo Drive AC-AC Servoregler Einachssystem- Betriebsanleitung	Sicherheit, Geräteeinbau, Installation, Inbetriebnahme, Diagnose, Spezifikationen, Zertifizierungen und geltende Normen, Technische Daten	CA65642-002 PDF
MSD Servo Drive DC-AC Servoregler Mehrachssystem - Betriebsanleitung	Sicherheit, Geräteeinbau, Installation, Inbetriebnahme, Diagnose, STO, Betrieb mit AC-AC Servoregler als Versorgung, Projektierung, Applikationsbeispiel, Spezifikationen, Zertifizierungen und geltende Normen, Technische Daten	CA97554-002 PDF
MSD Power Supply Unit Mehrachssystem- Betriebsanleitung	Sicherheit, Geräteeinbau, Installation, Inbetriebnahme, Diagnose, Spezifikationen, Zertifizierungen und geltende Normen, Technische Daten	CA97556-002 PDF
MSD Servo Drive Sercos II - Benutzerhandbuch	Sicherheit, Inbetriebnahme, Kommunikationsphasen, Parameterinter- face, Fehler-, Warn- und Statusmeldungen, Betriebsarten, Wichtung, Referenzierung, Touchprobe, Parameterlisten	CA65648-002 PDF
MSD Servo Drive Sercos III - Benutzerhandbuch	Sicherheit, Montage und Anschluss, Inbetriebnahme und Konfigura- tion, Parametrierung, Datenübertragung, Normierung und Wichtung, Funktionalität, Fehlermeldung und Diagnose, Parameterlisten	CA97557-002 PDF
MSD Servo Drive Feldbussysteme PROFIBUS/PROFINET Benutzerhandbuch	Beschreibung und Parametrierung des MSD Servo Drive am PROFIBUS/PROFINET Feldbus-System	CA65645-002 PDF
Modulares Mehrachs- Servoregler System-MSD - Bestellkatalog	Informationen, Bestellhinweise, Spezifikationen und technische Daten zu: MSD Einachs-Servoregler Compact, MSD Einachssystem, MSD Mehrachssystem, Sicherheitstechnik, Kommunikation, Technologie, Funktionspakete, Zubehör und Motoren	CDL 29950- en PDF
MSD Servo Drive - Geräte Hilfe	Beschreibung der Software-Funktionalität MSD Servo Drive, Firmware-Versionen: - MSD Einachs-Servoregler Compact ab V1.30-xx - MSD Einachssystem ab V124-xx - MSD Mehrachssystem ab V124-xx	CB40859-002 PDF und HTML
Moog DriveAdministrator 5 - Programm Hilfe PC Benut- zersoftware	Kontext-sensitive Hilfe für Moog DRIVE ADMINISTRATOR der Version 5.x. grafische PC-Benutzersoftware zur Erst- und Serieninbetriebnahme, Bedienung, Diagnose und Projektverwaltung	CB19692-002

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT

8

1.4 Piktogramme für nützliche Informationen

Die in diesem Dokument verwendeten Piktogramme für nützliche Informationen und Handlungsschritte bedeuten für den Benutzer folgendes:

Hinweise und Handlungsanweisungen			
i	HINWEIS: Nützliche Information oder Verweis auf andere Dokumente.		
Ziffer	HANDLUNGSANWEISUNG: Bearbeitungsschritt, die der Benutzer oder das System ausführt.		
Tabelle 1.1	Verwendete Piktogramme für Hinweise und Handlungsanweisungen		

1.5 Haftungsausschluss

Die Beachtung der Dokumente zu den Geräten von Moog ist Voraussetzung:

- für den sicheren Betrieb.
- um angegebene Leistungsmerkmale und Produkteigenschaften zu erreichen.

Für Personen-, Sach- oder Vermögensschäden, die durch Nichtachtung der Dokumente entstehen, übernimmt die Moog keine Haftung.

1.6 Transport, Lagerung

Beachten Sie die in der Betriebsanleitung unter "Technische Daten" festgelegten Hinweise zum Transport, zur Lagerung und sachgemäßem Gebrauch der Geräte.

1.7 Entsorgung

Bitte beachten Sie aktuelle nationale Bestimmungen! Entsorgen Sie gegebenenfalls einzelne Teile, je nach Beschaffenheit und existierende länderspezifische Vorschriften, z.B. als

- Elektroschrott
- Kunststoffe
- Metalle

oder beauftragen Sie einen zertifizierten Entsorgungsbetrieb mit der Verschrottung.

1.8 Helpline/Support & Service

Unsere Helpline hilft Ihnen schnell und zielgerichtet, falls Sie technische Fragen zu Ihrem Gerätes haben.

Anschrift:	Moog GmbH			
	Hanns-Klemm-Straße 28			
	D-71034 Böblingen			
Telefon:	+49 7031 622-0			
Telefon:	+49 7031 622-100			
E-Mail:	drives-support@moog.com			
Suchen Sie weiter:	Unterstützung im Servicefall, helfen Ihnen die Spezialisten von Moog gerne			
Service:	Bitte kontaktieren Sie uns unter			
Telefon:	+49 7031 622-0			

E-Mail: info.germany@moog.com

1.9 Normative Referenzen

Für das Feldbussystem CANopen und EtherCAT gelten folgende Normen:

IEC/EN 61158 -

Feldbusse für industrielle Kommunikation.

IEC 61508-4 (1998-12) -

Funktionale Sicherheit sicherheitsbezogener elektrischer / elektronischer / programmierbarer elektronischer Systeme – Teil 4: Begriffe und Abkürzungen.

IEC 61784-1 (2004-7) -

Digitale Datenkommunikation in der Leittechnik – Teil 1: Feldbus-Kommunikationsprofile für die prozess- und fertigungstechnische Automatisierung.

IEC 50325-4 2002 Part 4: CANopen -

Europäische Norm, die den CANopen-Standard im Rahmen der CAN-Nutzerorganisation beschreibt.

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT

2 Sicherheit

2.1 Überblick

Unsere Geräte entsprechen dem Stand der Technik und den anerkannten sicherheitstechnischen Bestimmungen, trotzdem können Gefahren entstehen. In diesem Kapitel:

- Informieren wir über Restrisiken und Gefahren, die von unseren Geräten bei bestimmungsgemäßer Verwendung ausgehen.
- Warnen wir vor vorhersehbarer Fehlanwendung unserer Geräte.
- Weisen wir auf die notwendige Sorgfalt und auf zu treffende Maßnahmen hin, die Risiken vermeiden.

2.2 Maßnahmen zur Sicherheit

Hinweis:

Ihr Gerät nur unter Beachtung der Dokumente zur entsprechenden Gerätefamilie installieren und in Betrieb nehmen!

Unsere Geräte sind schnell und sicher zu betreiben. Zu Ihrer Sicherheit und zur sicheren Funktion Ihrer Maschine folgendes beachten:

1. Sicherheitshinweise zu den Geräten beachten!

 Beachten Sie Sicherheits- und Warnhinweise in den Informations-produkten, die zu den Geräten gehören!

2. Von elektrischen Antrieben gehen Gefahren aus, durch:

- Elektrische Spannungen > 230 V/460 V! 10 min. nach Netz-Aus können noch gefährliche Spannungen anliegen. Deshalb auf Spannungsfreiheit prüfen!
- Rotierende Teile.
- Automatisch startende Antriebe.
- Heiße Bauteile und Oberflächen.
- Elektrostatische Entladung.

3. Schutz vor magnetischen und elektromagnetischen Feldern bei Montage und Betrieb

Personen mit Herzschrittmachern, metallischen Implantaten und Hörgeräten ist der Zugang zu folgenden Bereichen untersagt:

- Bereiche, in unmittelbarer Umgebung elektrischer Ausrüstungen!
- Bereiche, in denen elektronische Bauteile und Servoregler montiert, repariert und betrieben werden!
- Bereiche, in denen Motoren montiert, repariert und betrieben werden! Besondere Gefahren entstammen von Motoren mit Dauermagneten.

4. Ihre Qualifikation

Um Personen- und Sachschäden zu vermeiden, darf nur qualifiziertes Personal mit elektrotechnischer Ausbildung am Gerät arbeiten mit Kenntnissen:

- Der nationalen Unfallverhütungsvorschriften (DGUV V3 in Deutschland).
- In Aufbau, Montage, Inbetriebnahme und Betrieb des Geräts.

Alle Arbeiten, in anderen Bereichen, wie Transport, Lagerung und Entsorgung darf nur geschultes Personal ausführen.

Bei Missachtung erlischt die Gewährleistung!

5. Bei der Installation beachten:

- Normen und Richtlinien zur elektrischen Installation, wie Leitungsquerschnitt, Schirmung, usw. einhalten!
- Elektronische Bauteile und Kontakte nicht berühren! Elektrostatische Entladung kann Menschen schaden und Bauteile zerstören!
- Schutzmaßnahme "Gerät erden" einhalten!

2.3 Allgemeine Sicherheits- und Warnhinweise

Von unseren Geräten können Gefahren ausgehen. Deshalb, beachten Sie:

- In diesem Dokument verwendete Sicherheits- und Warnhinweise!
- Sicherheits- und Warnhinweise in anderen Dokumenten, ins Besonderen . den Betriebsanleitungen, die zu den Geräte-Baureihen gehören!

Allgemein gültige Sicherheits- und Warnhinweise für den Nutzer von Moog-Geräten:

GEFAHR!	Verletzungsgefahr durch elektrische Spannung!
4	• Fehlverhalten führt zu schweren Körperverletzungen oder Tod. Beachten Sie Sicherheits- und Warnhinweise in diesem Dokument und auf dem Gerät.

WARNUNG! Verletzungsgefahr durch elektrische Spannung!

· Fehlverhalten kann zu schweren Körperverletzungen oder Tod führen. Beachten Sie Sicherheits- und Warnhinweise in diesem Dokument und auf dem Gerät.

Verletzungsgefahr oder Beschädigung des Geräts durch Fehlbedienung! VORSICHT!

· Fehlverhalten kann zu leichten Körperverletzungen oder Sachschäden führen. Beachten Sie Sicherheits- und Warnhinweise in diesem Dokument und auf dem Gerät.

WARNUNG!

Verletzungsgefahr durch heiße Oberflächen und Bauteile!

· Fehlverhalten kann zu schweren Verbrennungen führen. Elektronische Bauteile können während des Betriebs heiß werden! Beachten Sie Sicherheits- und Warnhinweise in diesem Dokument und auf dem Gerät!

WARNUNG! Verletzungsgefahr oder Beschädigung durch elektrostatische Entladung!

Elektrostatische Entladung kann Bauteile zerstören und im schlimmsten Fall zu Verletzungen oder Tod führen. Elektronische Bauteile und Kontakte nicht berühren!

Beachten Sie Sicherheits- und Warnhinweise in diesem Dokument und auf dem Gerät!

Beachten Sie spezielle Sicherheits- und Warnhinweise, die hier im Dokument direkt vor einer spezifischen Handlung stehen und den Nutzer vor einer konkreten Gefahr warnen!

Sicherheitshinweise zur vorliegenden Dokumentation 2.3.1

Die Feldbussysteme CANopen und EtherCAT sind Kommunikationssysteme, die in den Grenzen der Antriebssysteme MSD Servo Drive Einachs- und Mehrachssystem und MSD Servo Drive Compact an die jeweiligen Gegebenheiten der Maschine oder Anlage anzupassen sind.

2.4 Wichtige Informationen

In den Betriebsanleitungen zu den Gerätebaureihen finden Sie detaillierte Informationen zu folgenden Bereichen:

- . Bestimmungsgemäße Verwendung.
- Wichtige Hinweise zum Einbau Ihres Geräts.
- Verantwortlichkeiten von Errichter und Betreiber vollständiger . Maschinen oder Anlagen.
- Relevante Gesetze, angewendete Normen und Richtlinien.

3 Gerätebeschreibung

3.1 Feldbussystem CANopen

Das Feldbussystem CANopen beschreibt den Austausch von Daten und basiert auf dem CAN-Vernetzungskonzept (CAN = Controller Area Network). Der CANopen Standard definiert grundlegende Kommunikationsmechanismen (Kommunikationsprofil) und die Funktionalität der kommunizierenden Geräte (Geräteprofil).

3.1.1 CANopen Funktionalität des MSD Servo Drive

Das CANopen-Kommunikationsprofil ist in der CiA301 definiert. Dieses Profil:

- Beschreibt Dienste und Protokolle, die unter CANopen verwendet werden.
- Unterscheidet zwischen Prozess-Daten-Objekte (PDO's) und Service-Daten-Objekte (SDO's).
- Definiert ein einfaches Netzwerkmanagement.

Basierend auf dem Kommunikationsprofil CiA301 (Rev. 4.01) ist das Geräteprofil CiA402 (Rev. 2.0) für elektrische Antriebe entstanden. Dieses Geräteprofil:

- Beschreibt Betriebsarten und Objekte.
- Definiert Funktionalität und Aufbau des Objektverzeichnisses für die Geräte.

Die Nutzung von CANopen-Geräten, die dem Geräteprofil CiA402 entsprechen, bewirkt eine höhere Unabhängigkeit von den Geräteherstellern.

In den folgenden Abschnitten erhalten Sie einen Überblick über die im MSD Servo Drive integrierte CANopen-Funktionalität und Informationen zur Inbetriebnahme.

3.1.2 Systemvoraussetzungen CANopen

Systemvoraussetzungen Moog Geräte		
Geräte:	MSD Servo Drive	
Standardisierung	ISO 11898 / IEC/EN 61800-7	
EDS-Datei:	Aktuelles "Electronic data sheet" für CANopen (Gerätebeschreibungsdatei für MSD Servo Drive als .eds-Datei). Liegt mit der Firmware im Download-Bereich auf www.moogsoftwaredownload.com/msd.html	
Kommunikationsprofil	CiA301 (Rev. 4.01)	
Geräteprofil	CiA402 (Rev. 2.0)	
Service Tool:	PC-Benutzersoftware Moog DriveAdministrator 5	
Master:	CANopen-Master mit Unterstützung der o.g. Kommunikations- und Geräteprofile	

Tabelle 3.1Systemvoraussetzungen CANopen

3.2 Feldbussystem EtherCAT

Wenn es um Echtzeit-Ethernet-Systeme geht, hat sich EtherCAT heute als feste Größe im Automatisierungsbereich etabliert.

Der Aufbau eines EtherCAT-Netzwerks lässt sich leicht an eine Maschinen-Infrastruktur anpassen und geschieht in

- Stern-, Ring- oder Linien-Struktur.
- Mit Patch- oder Crossover-Kabel.

Ziel des Feldbussystems EtherCAT ist es, ein Rechnernetz von der Leitebene im Bürobereich bis hin zu Feldgeräten in industriellen Produktionsanlagen zu schaffen (vertikale Integration der Automatisierungstechnik).

3.2.1 Das EtherCAT Protokoll

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Das in IEC-Standard IEC/EN 61158 offengelegte Protokoll eignet sich für harte wie weiche Echtzeitanforderungen in der Automatisierungstechnik.

3.2.2 EtherCAT Funktionalität des MSD Servo Drive

Zur Minimierung des Einarbeitungsaufwandes wurde ab dem Application Layer auf bekannte Kommunikations- und Geräteprofile zurückgegriffen. Anwender, die mit den Kommunikations- und Geräteprofilen CiA301 und CiA402 vertraut sind, können mit geringem Aufwand zu dieser neuen Feldbustechnologie wechseln.

3.2.3 Systemvoraussetzungen EtherCAT

Systemvoraussetzungen LTI-Motion Gerät		
Geräte:	MSD Servo Drive	
Normierung	IEC/EN 61158 / IEC/EN 61784-2 / IEC/EN 61800-7	
ESI-Datei:	Aktuelle "EtherCAT slave information" (ESI-Gerätebeschreibungsdatei für MSD Servo Drive als .xml-Datei). Liegt mit der Firmware im Download-Bereich auf www.moogsoftwaredownload.com/msd.html	
Kabel:	Patchkabel ab CAT 5e SFTP	
Kommunikationsprofil	IEC/EN 61158 / ETG. 1000	
Geräteprofil	(Rev. 2.0) CiA402 (CoE) / ETG. 2200	
Service Tool:	PC-Benutzersoftware Moog DRIVEADMINISTRATOR 5	
Master:	EtherCAT-Master mit Unterstützung der o.g. Kommunikations- und Geräteprofile	

Tabelle 3.2 Systemvoraussetzungen EtherCAT

3.3 Weiterführende Dokumentation

Moog-Dokumentation	ldNr. / Dateiformate	Ablage
MSD Servo Drive Einachs-Servoregler Compact - Betriebsanleitung	CA97555-002 / PDF	
MSD Servo Drive AC-AC Servoregler Einachssystem - Betriebsanleitung	CA65642-002 / PDF	
MSD Servo Drive DC-AC Servoregler Mehrachssystem - Betriebsanleitung	CA97554-002 / PDF	drives-support@ moog.com
MSD Power Supply Unit Mehrachssystem - Betriebsanleitung	CA97556-002 / PDF	-
MSD Servo Drive - Geräte Hilfe	CB40859-002 / PDF und HTML	

Tabelle 3.3Moog Dokumentation

Weiterführende Feldbus-Dokumentationen	Ablage
CiA® CiA402 (V4.2.0): CANopen application layer and communication profile	
CiA® CiA402: CANopen device profile for drives and motion control	www.can-cia.com
EtherCAT Communication Specification Version 1.0 2004	www.ethercat.org
EtherCAT Indicator Specification Proposal V0.91 2005	www.ethercat.org
Normen der Reihe IEC61158 (-1 bis -6-x): Industrial communication networks – Fieldbus specifications	siehe: www.beuth.de
Weitere Informationen zum Feldbussystem CANopen	www.can-cia.com
Weitere Informationen zum Feldbussystem EtherCAT	www.ethercat.org

Tabelle 3.4 Weiterführende Feldbus-Dokumentationen

4 Montage und Anschluss des Feldbussystems CANopen

4.1 Lage

Die Darstellung (unten) zeigt die Lage des Feldbussystems CANopen im MSD Servo Drive. Die Lage im MSD Servo Drive Compact ist identisch.

HINWEIS:

Das Feldbussystem CANopen ist als Ausführungsvariante für die Baureihen MSD Servo Drive Compact, Einachs- und Mehrachsregler konzipiert!

VORSICHT! Verletzungsgefahr und/oder Eigentumsschaden durch elektrische Spannung!

Das Berühren von blanken oder abisolierten Adern und Leitungen, die unter Spannung stehen, kann zu einem Stromschlag und Verbrennungen führen.
Kurzschlüsse können Schäden am Gerät verursachen!

Bei der Montage von elektrischen Komponenten wie z.B. Leitungen und Kabel, für Spannungsfreiheit sorgen! Gegebenenfalls beschädigte Leitungen austauschen!

4.2 Anschlüsse und Bedienelemente

Folgende Abbildung zeigt die Position der Anschlüsse, Bedienelemente und Diagnose LEDs für das Feldbussystems CANopen an den MSD Servo Drive.

MSD Servo Drive Einachs- und Mehrachssysstem (G392/G395/G393/G397) MSD Servo Drive Compact (G394)

Bild 4.1 Lageplan Anschuss- und Bedienelemente CANopen

Anschluss	Bezeichnung	Funktion
1	H14	LED (gelb) CANopen Netzwerkzustand
2	H15	LED (grün) Statusanzeige - Versorgungsspannung
3	S4	DIP-Schalter zur Adressvergabe (MSD Servo Drive Einachs- und Mehrachssystem)
4	S4	DIP-Schalter zur Adressvergabe (MSD Servo Drive Compact)
5	X32	Systemanschluss

Tabelle 4.1 Anschlüsse, Bedienelemente und LEDs des Feldbussystems CANopen

4.3 Leuchtdioden - Blink-Codes des Feldbussystems

LED	Status CANopen - Netzwerkzustand - NMT		
	NMT INIT / BOOT-UP	LED blinkt im 100 ms Zyklus	
H14 (gelbe LED)	NMT STOPPED	LED blinkt im 800 ms Zyklus	
	NMT PRE-OPERATIONAL	LED blinkt im 1600 ms Zyklus	
	NMT OPERATIONAL	LED leuchtet konstant	

Tabelle 4.2
 LED H14 - Blinkcodes/Netzwerkzustand

LED	Status CANopen - Versorgungsspannung	
H15 (grüne LED)	24 V Versorgungsspannung ist am Feldbussystem CANopen vorhanden	LED leuchtet konstant

 Tabelle 4.3
 LED H15 - Blinkcodes/Versorgungsspannung

4.4 Adressvergabe CANopen (Node-ID)

Informieren Sie sich bei Ihrem Projektierer, welche Node-ID für Ihren Servoregler bestimmt ist:

Es gibt 3 Arten der Adressvergabe für das Feldbussystem CANopen, über:

- 1. Die Software CAN-Adresse (P 2005-COM_CAN_Adr im Servoregler).
- 2. Den DIP-Schalter (S4, Hardwareadresse).
- 3. Eine Kombination aus Software CAN-Adresse des Servoreglers und des DIP-Schalters (S4, Hardwareadresse).

Node-ID = Hardwareadresse (S4) + Softwareadresse P 2005-COM_CAN_Adr. Diese Art der Adressierung ist sinnvoll, wenn

- der gleiche Parametersatz bei bis zu 15 Antrieben verwendet wird
- und die unterste Adresse 30 ist.

4.4.1 Adressvergabe über die Software CAN-Adresse

Die Adresse Ihres Feldbussystems schreiben Sie in den Parameter

P 2005-COM_CAN_Adr der PC-Benutzersoftware Moog DriveAdministrator (Rubrik "Feldbus" --> CANopen/EtherCAT).

Näheres hierzu finden Sie in der Hilfe der PC-Benutzersoftware Moog DriveAdministrator 5.

4.4.2 Adressvergabe über DIP-Schalter (S4)

Über den DIP-Schalter (S4) des MSD Servo Drive stellen Sie die Hardwareadresse des Feldbussystems CANopen ein.

DIP-Schalter MSD Servo Drive (Einachs- und Mehrachsregler)

- Adresseinstellung: Schalter 1 bis 7
- Aktivieren/Deaktivieren des 120 Ω Busabschlusswiderstands: Schalter 8
- Realisierbare Adressanzahl: 0 bis 127

Wertigkeiten des DIP-Schalters am MSD Servo Drive (Einachs- und Mehrachsregler)			
	DIP-Schalternummer	Wertigkeit	Adresse
	1	2 ⁰	1
□ □ ∞	2	21	2
	3	2 ²	4
2	4	2 ³	8
— 4	5	24	16
	6	2 ⁵	32
	7	2 ⁶	64
\rightarrow on	8	Busabschlusswide	erstand (120 Ω)

Tabelle 4.4 DIP-Schalter MSD Servo Drive (Einachs- und Mehrachssystem)

DIP-Schalter MSD Servo Drive Compact

- Adresseinstellung: Schalter 1 bis 6.
- Aktivieren/Deaktivieren des 120 Ω Busabschlusswiderstands: Schalter 7.
- Realisierbare Adressanzahl: 0 bis 63.

Wertigkeiten des DIP-Schalters am MSD Servo Drive Compact			
	DIP-Schalternummer	Wertigkeit	Adresse
	1	2 ⁰	1
9	2	2 ¹	2
QJ 🔲	3	2 ²	4
3 T	4	2 ³	8
	5	24	16
	6	2 ⁵	32
× 011	7	Busabschlusswide	erstand (120 Ω)

Tabelle 4.5DIP-Schalter MSD Servo Drive Compact

Beispiel für die Adresseinstellung am DIP-Schalter:

Einstellen der Adresse "3":

- Voraussetzung: Busadressparameter P 2005-COM_CAN_Adr des Moog DriveAdministrator = 0 setzen.
- Schalter 1 und 2 auf "ON" stellen.
- Die Wertigkeiten addieren 2⁰ + 2¹.
- Resultierende Geräteadresse = 3.

Zusätzliche Hinweise zur Adresseinstellung

HINWEIS:

Die Schalter 8 am MSD Servo Drive und 7 am MSD Servo Drive Compact dienen als Busabschluss.

Ihr Gerät übernimmt Änderungen an der Adresse für das Feldbussystem CANopen bei einem

- Reset-Node-Kommando.
- Geräte Start.
- Geräte Neustart.

Die aktive Busadresse finden Sie im Parameter P 2058 COM_CAN_Adr_Act.

4.4.3 Adressvergabe über die Kombination aus Software CAN-Adresse des Servoreglers und des DIP-Schalters (S4, Hardwareadresse)

Beispiel: Adresse "33" einstellen:

- 1. Busadressparameter P 2005-COM_CAN_Adr (Softwareadresse) auf "30" setzen.
- 2. Schalter 1 und 2 an S4 (Hardwareadresse) auf "ON" stellen

Die resultierende Node-ID (Softwareadresse + Hardwareadresse) beträgt 30 + 3 = ,33".

4.5 Pinbelegung der Klemme X32

HINWEIS:

1. Funktional gleiche Pins sind im Feldbussystem CANopen verbunden.

2. Das Feldbussystem CANopen benötigt eine externe 24 V-Versorgung!

Klemmleiste X32 Pinbelegung

3. Der Klemmenanschluss X32 ist für Federzugklemmen ausgelegt.

PIN 10	-5
9 – 9 – 9 – 9	-4
8 – 2 – 8	-3
7 - 7 - 7 - 7	-2
6 – – – – – – – – – – – – – – – – – – –	-1

Funktional gleiche Pins	Funktion	Beschreibung
10 und 5	CAN_+24V	externe 24 V-Versorgung
9 und 4	CAN_H	CAN High
8 und 3	CAN_SHLD	CAN Shield (optional)
7 und 2	CAN_L	CAN Low
6 und 1	CAN_GND	CAN Ground (0 V)

Tabelle 4.6 Pinbelegung Klemme X32

4.6 Installation des Feldbussystems CANopen

4.6.1 Systemanschluss des Feldbussystems CANopen

Bild 4.2 Systematische Anschlussdarstellung des Feldbussystems CANopen

Das Feldbussystem CANopen:

- Wird über die Klemme X32 ans System angeschlossen.Ist potentialgetrennt zur Elektronik des Servoreglers.
- Bekommt eine externe 24 V Spannungsversorgung über die Klemme X32.

4.6.2 Spezifikation des Feldbussystems CANopen

Anschluss	Klemme X32 (Federzugklemme)	
Wellenabschlusswiderstand - Busabschluss -	 120 Ω (intern) Busabschlusswiderstand aktivieren: MSD Servo Drive - Schalter 8 des DIP-Schalters S4 auf "ON" MSD Servo Drive Compact - Schalter 7 des DIP-Schalters S4 auf "ON" 	
Maximale Eingangsfrequenz	1 MHz	
Externe Spannungsversorgung	+24 V +25 %, 50 mA (potentialfrei zum Servoregler)	
Spannungswelligkeit	Maximal 3 Vss	
Stromaufnahme	Maximal 50 mA pro Teilnehmer	
Kabeltyp	4-adrig geschirmt	

Tabelle 4.7 Spezifikation Feldbussystem CANopen

4.6.3 Übertragungsgeschwindigkeiten des Feldbussystems CANopen (Baudraten)

Baudraten für das Feldbussystem CANopen:

Übertragungs- geschwindigkeit (Baudrate)	Maximale Leitungslänge über das Gesamtnetz ¹⁾	Anmerkung
1000 kBaud	25 m	Werkseinstellung
500 kBaud	100 m	
250 kBaud ²⁾	250 m	
125 kBaud ²⁾	500 m	
50 kBaud ³⁾	1000 m	
20 kBaud ³⁾	2500 m	

1) Die geschätzte Kabellänge bei einer Übertragungsverzögerung von 5 ns/m und einer gesamten Ein-, Ausgangsverzögerung für ein Gerät beträgt:

- 1 M-800 kbit/s: 210 ns
- 500 250 kbit/s: 300 ns (darin enthalten 2 * 40 ns für den Optokoppler)
- 125 kbit/s: 45 0 ns (darin enthalten 2 * 100 ns für den Optokoppler)

50 -10 kbit/s: effektive Verzögerung = Verzögerung von (Rezessiv zu Dominant + Dominant zu Rezessiv) dividiert durch 2.
 2) Für eine Kabellänge > 200 m wird die Verwendung von Optokopplern empfohlen. Wenn die Optokoppler zwischen CAN-Controller und Empfänger geschaltet sind, beeinflusst die Übertragungsverzögerung des Optokopplers die maximal mögliche Kabellänge. Die Übertragungsverzögerung des eingesetzten Optokopplers reduziert die maximale Kabellänge um 4 m/10 ns.
 3) Für eine Kabellängen größer 1 km kann eine Brücke oder ein Repeater erforderlich sein.

Tabelle 4.8 Übertragungsgeschwindigkeiten des Feldbussystems CANopen (Baudraten)

Hinweis:

Bitte beachten Sie, dass die zulässigen Leitungslängen der Übertragungsgeschwindigkeiten nicht überschritten werden!

1.	 Stellen Sie sicher, dass die Hardwa- refreigabe (ENPO und ISDSH) am MSD Servo Drive (X4, Steueranschlüsse) verdrahtet (mit 24 V beschaltet) ist (siehe Kapitel "4.6.5 Hardwarefreigabe" auf Seite 20). 	Siehe Betriebsanleitungen "Spezifikation der Steueranschlüsse": MSD Servo Drive Compact CA97555-002 MSD Servo Drive Einachssystem CA65642-002 MSD Servo Drive Mehrachssystem CA97554-002
2.	 Schließen Sie die Signalleitungen des Feld- bussystems CANopen an (Klemme X32). 	Siehe: • "4.5 Pinbelegung der Klemme X32" auf Seite 18 • 4.6 1 Systemanschluss des Feldbussystems
3.	Schließen Sie die externe Spannungsver- sorgung +24 V an.	CANopen" auf Seite 19
4.	Aktivieren Sie den internen Busabschluss- widerstand des letzten Servoreglers.	
5.	Schalten Sie den Servoregler ein.	

4.6.4 Installation des Feldbussystems CANopen

Weiterführende Informationen im Kapitel "Inbetriebnahme und Konfiguration des Feldbussystems CANopen"

4.6.5 Hardwarefreigabe

Voraussetzung zum Betrieb der Endstufe (siehe in den Betriebsanleitungen zu MSD Servo Drive und MSD Servo Drive Compact):

- Steuereingang zur Hardwarefreigabe, ENPO des MSD Servo Drive und MSD Servo Drive Compact an den Steueranschlüssen (X4) mit 24 V beschalten.
- Steuereingang STO (Safe Torque Off), ISDSH des MSD Servo Drive und MSD Servo Drive Compact an den Steueranschlüssen (X4) mit 24 V beschalten.
- In der übergeordneten Steuerung muss gemäß der "MSD Servo Drive -Geräte Hilfe" die Logik zur Funktion STO (Kategorie 3, PL d, EN ISO 13849-1) existieren.

Sind die Steuereingänge ENPO und ISDSH an den Steueranschlüssen (X4) nicht beschaltet, bleibt das Gerät im:

- Zustand 1 = "Nicht Einschaltbereit" (Not ready to switch on) oder
- Zustand 2 = "Einschaltsperre" (Switch on disabled).

4.7 Gerätezustand des Servoreglers

Eine in die Bedieneinheit des Servoreglers (MSD Servo Drive und MSD Servo Drive Compact) integrierte 7-Segmentanzeige zeigt den Gerätezustand.

Die wichtigsten Informationen zum Gerätezustand des Servoreglers finden Sie in folgender Tabelle. "D1" ist dabei die 1. Stelle und "D2" die 2. Stelle der 7-Segmentanzeige:

Gerätezustand des Servoreglers				
D1	D2	Beschreibung		
<i>8</i> .	<i>8</i> .	Gerät im Reset-Zustand		
	О.	Initialisierung bei Gerätestart	(Start)	
<u>5.*)</u>	1.	¹⁾ Nicht einschaltbereit (keine ZK-Spannung)	(NotReadyToSwitchOn)	
<u>5.*)</u>	2.	¹⁾ Einschaltsperre (ZK in Ordnung, Endstufe nicht bereit)	(SwitchOnDisabled)	
		Einschaltbereit (Endstufe bereit)	(ReadyToSwitchOn)	
	4.	Eingeschaltet (Gerät steht unter Spannung) ²⁾	(SwitchedOn)	
5. Antrieb bereit (Antrieb bes		Antrieb bereit (Antrieb bestromt und für Sollwertvorgabe bereit) $^{2)}$	(OperationEnable)	
	6.	Schnellhalt ²⁾	(QuickStopActive)	
	7.	Fehlerreaktion aktiv ²⁾	(FaultReactionActive)	
Ε	r	Fehler (siehe unten)	(Fault)	
Anzeige	Anzeige im Fehlerfall			
Ε	 Fehler ohne "Punkt" - Fehler, die sich entsprechend ihrer Programmierung quittieren lassen. Fehleranzeige mit "Punkt" - Fehler, die sich erst nach Behebung der Fehlerursache quittieren lassen. 			
X	Fehlernummer (dezimal)			
Y	Y	Fehlerort (dezimal)		

S. blinkt, wenn die Funktion STO (Safe Torque Off) aktiv ist, Anzeige erlischt wenn Funktion inaktiv ist.
 *) Es handelt sich um keine "sichere Anzeige" im Sinne der IEC/EN 61800-5-2.
 2) Der Punkt blinkt, wenn die Endstufe aktiv ist.

i

HINWEIS: Ausführliche Informationen zum Gerätezustand des Servoreglers (MSD Servo Drive und MSD Servo Drive Compact) finden Sie in den Betriebsanleitungen und Geräte-Hilfen zu den MSD Servo Drive Baureihen.

Beispiel einer Blinksequenz

➢ [Er > 02 > 05] * [Er > 02 > 05] * [Er > 02 > 05] ...

Er	Fehler:	Er = "Störung"
53	Fehlernummer:	02 = "Fehler in der Parameterliste"
05	Fehlerort:	05 = "Prüfung der aktuellen Werte der Parameterliste"

Fehlernummern und Fehlerorte entnehmen Sie der Fehlerliste der "MSD Servo Drive – Geräte Hilfe" (als PDF- Datei und im HTML-Format im Downloadbereich von Moog verfügbar).

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 22

5 Montage und Anschluss des Feldbussystems EtherCAT

5.1 Lage

Die Darstellung (unten) zeigt die Lage des Feldbussystems EtherCAT im MSD Servo Drive. Die Lage des Feldbussystems EtherCAT im MSD Servo Drive Compact ist identisch.

HINWEIS:

Das Feldbussystem EtherCAT ist als Ausführungsvariante für die Baureihen MSD Servo Drive Compact, Einachs- und Mehrachsregler konzipiert!

VORSICHT! Verletzungsgefahr und/oder Eigentumsschaden durch elektrische Spannung!

A
 Bei de
 beit a

Das Berühren von blanken oder abisolierten Adern und Leitungen, die unter Spannung stehen, kann zu einem Stromschlag und Verbrennungen führen.
Kurzschlüsse können Schäden am Gerät verursachen!

Bei der Montage von elektrischen Komponenten wie z.B. Leitungen und Kabel, für Spannungsfreiheit sorden! Gegebenenfalls beschädigte Leitungen austauschen!

5.2 Anschlüsse und Bedienelemente

Folgende Abbildung zeigt die Lage der Anschlüsse, Bedienelemente und Diagnose LEDs des Feldbussystems EtherCAT für die MSD Servo Drives.

EtherCAT für den MSD Servo Drive (Einachs- und Mehrachsregler) (G392/G395/G393/G397) EtherCAT für den MSD Servo Drive Compact (G394)

Bild 5.1 Lageplan Anschuss- und Bedienelemente EtherCAT

Anschluss	Bezeichnung	Funktion	
1	X15	RJ45 Buchse - ETHERCAT IN	
2	X16	RJ45 Buchse - ETHERCAT OUT	
3	RN	LED - ETHERCAT RUN	

 Tabelle 5.1
 Anschlüsse des Feldbussystems EtherCAT

Hinweis:

Die Stecker X15/X16 sind bei der Gerätereihe MSD Servo Drive Compact gegenüber der Gerätereihe Einachs- und Mehrachssystem um 180 $^\circ$ gedreht.

5.3 Leuchtdioden - und Blink-Codes des Feldbussystems

5.3.1 MSD Servo Drive (Einachs- und Mehrachsregler)

Blinkcodes der LEDs an den RJ45 Buchsen des Feldbussystems EtherCAT (MSD Servo Drive - Einachs- und Mehrachsregler, ohne zusätzliche LED):

 Tabelle 5.2
 Blinkcodes der LEDs des Feldbussystems EtherCAT am MSD Servo Drive (Einachs- und Mehrachssystem)

Steckverl	Steckverbinder X16					
LED		EtherCAT - Netzwerkzustand	Abbildung			
	link/	Off = no Link · Keine Verbindung zu einem anderen Teilnehmer				
		On = Link · Verbindung zu einem anderen Teilnehmer · Kein Datenaustausch	3			
(grün)	Activity	Blinking = Activity · Datenaustausch aktiv				
Untere LED (grün)	-	keine Funktion				

Tabelle 5.3Blinkcodes der LEDs des Feldbussystems EtherCAT am MSD Servo Drive
(Einachs- und Mehrachssystem)

5.3.2 MSD Servo Drive Compact

Die Blinkcodes der LEDs an den RJ45 Buchsen (MSD Servo Drive Compact, mit zusätzlicher LED - EtherCAT RUN (RN)):

LED	EtherCAT - Netzwerkzustand		Abbildung
		Off = no Link · Keine Verbindung zu einem anderen Teilnehmer	
Obere LED	Link/ Activity	On = Link • Verbindung zu einem anderen Teilnehmer • Kein Datenaustausch	
(grun)		Blinking = Activity • Datenaustausch aktiv	
Untere	Link (PHY)	Off = no Link · Keine Verbindung zu einem anderen Teilnehmer	
LED (grün)		On = Link · Verbindung zu einem anderen Teilnehmer · Kein Datenaustausch	Recent C
		Grün = RUN	
		Off = Initialisation · Gerät ist im Zustand "Initialisierung"	
LED RN	RUN	Blinking = Pre-Operational · Gerät ist im Zustand "Pre-Operational"	
		Single Flash = Safe-Operational • Gerät ist im Zustand "Safe-Operational"	
		On = Operational · Gerät ist Betriebsbereit	

Tabelle 5.4 Blinkcodes des Feldbussystems EtherCAT am MSD Servo Drive Compact

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 26

5.3.3 ERROR Indikator MSD Servo Drive und MSD Servo Drive Compact

Die sieben Segment Anzeige zeigt folgende EtherCAT Fehler an:

Er 14 01 EtherCAT Watchdog Timeout

MOOG Id.-Nr.: CA65647-002 Stand: 03/2020

- Er 14 02 Wrong EEP data for EtherCAT communication controller or not supported controller
- Er 14 03 Internal ram error
- Er 14 04 Invalid Configuration
- Er 14 05 Missing EtherCAT receive process data on Sync Manager 2
- Er 14 06 Local Error
- Hierzu siehe auch Kapitel 5.6 auf Seite 28.

5.4 Pinbelegung der RJ45 Buchse

EIA/TIA-568A und EIA/TIA-568B sind Standards für 8-polige RJ45-Steckverbindungen. Der Unterschied zwischen den Standards sind vertauschte Adernpaare (2 und 3). Die untenstehende Pinbelegung zeigt den Farbcode für den Standard EIA/TIA-568B.

Pin	EIA/TIA-568B Ader-Paarnummer	Funktion	EIA/TIA-568B Farbe
1	2	Tx Data+	weiß/orangener Strich
2	2	Tx Data-	orange/weißer Strich oder orange
3	3	Rx Data+	weiß/grüner Strich
4	1	ungenutzt	blau/weißer Strich oder blau
5	1	ungenutzt	weiß/blauer Strich
6	3	Rx Data-	grün/weißer Strich oder grün
7	4	ungenutzt	weiß/brauner Strich
8	4	ungenutzt	braun/weißer Strich oder braun

Tabelle 5.5 Pinbelegung der RJ45 Buchse mit dem Standard EIA/TIA-568B

5.5 Installation des Feldbussystems EtherCAT

5.5.1 Systemanschluss des Feldbussystems EtherCAT

Systematische Anschlussdarstellung des Feldbussystems EtherCAT:

Bild 5.2 Topologie EtherCAT

System in Form der Linien-Topologie verbinden:

- Der EtherCAT-Master steht am Beginn der Linie.
- Jeder EtherCAT-Slave besitzt einen Eingangs-Port (X15, RJ45) und einen Ausgangs-Port (X16, RJ45).
- Die EtherCAT-Slaves in einer Linie verbinden (siehe Abbildung oben). Dazu das ankommende Kabel vom:
 - EtherCAT-Master mit dem Eingangs-Port des 1. EtherCAT-Slaves verbinden.
 - Den Ausgangs-Port des 1. EtherCAT-Slaves mit dem Eingang des 2. EtherCAT-Slaves vebinden und so weiter.
- Am letzten EtherCAT-Slave der Linie bleibt der Ausgangs-Port offen.

Ein offener Ausgang am letzten EtherCAT-Slave der Linie führt im EtherCAT-Netzwerk zu einem logischen Kurzschluss der Transmit- (Tx) und Receive- (Rx) Leitungen. Deshalb ist jedes EtherCAT-Netzwerk als ein logischer Ring anzusehen.

VORSICHT! Eigentumsschaden durch falsche Verkabelung

Fehler durch falsche Verkabelung, vertauschen von Eingang und Ausgang, kann zu einer fehlerhaften Adressierung führen. Im schlimmsten Fall zur Beschädigung Ihres Antriebssystems.

Deshalb:
 Das Feldbussystem EtherCAT von autorisiertem Personal installieren lassen.
 Halten Sie sich an die beschriebenen Vorgaben und wenden sich gegebenenfalls an die Moog-Helpline.

HINWEIS:

Für die beste Leistung und Güte der Datenübertragung verwenden Sie zertifizierte und geprüfte, fertig konfektionierte Kabel der Kategorie CAT-5e-Kabel.

VORSICHT! Eigentumsschaden durch falsche Montage

Niemals die Feldbussysteme EtherCAT und Standard-Ethernet in einem physikalischen Netzwerk verwenden! Dies beeinträchtigt das Antriebssystem und kann zum Ausfall der Kommunikation führen. Im schlimmsten Fall zur Beschädigung Ihres Antriebssystems. Deshalb:

- Das Feldbussystem EtherCAT von autorisiertem Personal installieren lassen.
- Nur zertifizierte Komponente(n) für eine EtherCAT-Infrastruktur verwenden.
- Zur Unterscheidung von Feldbüssystemen eine gesonderte Kabelfarbe für das Feldbussystem EtherCAT verwenden!

5.5.2 Hardwarefreigabe

Voraussetzung zum Betrieb der Endstufe (siehe in den Betriebsanleitungen MSD Servo Drive und MSD Servo Drive Compact):

- 1. Steuereingang zur Hardwarefreigabe, ENPO des MSD Servo Drive und MSD Servo Drive Compact an den Steueranschlüssen (X4) mit 24 V beschalten.
- 2. Steuereingang STO (Safe Torque Off), ISDSH des MSD Servo Drive und MSD Servo Drive Compact an den Steueranschlüssen (X4) mit 24 V beschalten.
- In der übergeordneten Steuerung muss gemäß der "MSD Servo Drive Geräte Hilfe" die Logik zur Funktion STO (Kategorie 3, PL d, EN ISO 13849-1) existieren.

HINWEIS:

Sind die Steuereingänge ENPO und ISDSH an den Steueranschlüssen (X4) des MSD Servo Drive und MSD Servo Drive Compact nicht beschaltet, bleibt das Gerät im:

- Zustand 1 = "Nicht Einschaltbereit" (Not ready to switch on) oder
- Zustand 2 = "Einschaltsperre" (Switch on disabled).

5.6 Gerätezustand des Servoreglers

Eine in die Bedieneinheit des Servoreglers integrierte 7-Segmentanzeige zeigt den Gerätezustand.

Die wichtigsten Informationen zum Gerätezustand des Servoreglers finden Sie in folgender Tabelle. "D1" ist dabei die 1. Stelle und "D2" die 2. Stelle der 7-Segmentanzeige:

Gerätezustand des Servoreglers					
D1	D2	Beschreibung			
8.	<i>8.</i>	Gerät im Reset-Zustand			
	О.	Initialisierung bei Gerätestart	(Start)		
<u>5.*)</u>		¹⁾ Nicht einschaltbereit (keine ZK-Spannung)	(NotReadyToSwitchOn)		
<u>5.*)</u>		¹⁾ Einschaltsperre (ZK in Ordnung, Endstufe nicht bereit)	(SwitchOnDisabled)		
	З.	Einschaltbereit (Endstufe bereit)	(ReadyToSwitchOn)		
	4.	Eingeschaltet (Gerät steht unter Spannung) ²⁾	(SwitchedOn)		
5.		Antrieb bereit (Antrieb bestromt und für Sollwertvorgabe bereit) ²⁾	(OperationEnable)		
б.		Schnellhalt ²⁾	(QuickStopActive)		
7.		Fehlerreaktion aktiv ²⁾	(FaultReactionActive)		
E R Fehler (siehe unten) (Fa		(Fault)			
Anzeige	Anzeige im Fehlerfall				

Tabelle 5.6 Zustandsanzeige Servoregler

Gerätezu	erätezustand des Servoreglers		
D1	D2 Beschreibung * Fehler ohne "Punkt" - Fehler, die sich entsprechend ihrer Programmierung quittieren lassen. * Fehleranzeige mit "Punkt" - Fehler, die sich erst nach Behebung der Fehlerursache quittieren lassen.		
Ε			
X	X	Fehlernummer (dezimal)	
Y	Y	Y Fehlerort (dezimal)	

S. blinkt, wenn die Funktion STO (Safe Torque Off) aktiv ist, Anzeige erlischt wenn Funktion inaktiv ist.
 *) Es handelt sich um keine "sichere Anzeige" im Sinne der IEC/EN 61800-5-2.
 2) Der Punkt blinkt, wenn die Endstufe aktiv ist.

Tabelle 5.6Zustandsanzeige Servoregler

1 HINWEIS: Ausführliche (MSD Servc

Ausführliche Informationen zum Gerätezustand des Servoreglers

(MSD Servo Drive und MSD Servo Drive Compact) finden Sie in der jeweiligen Betriebsanleitung.

Beispiel einer Blinksequenz

[Er > 02 > 05] * [Er > 02 > 05] * [Er > 02 > 05] ...

Er	Fehler:	Er = "Störung"
62	Fehlernummer:	02 = "Fehler in der Parameterliste"
85	Fehlerort:	05 = "Prüfung der aktuellen Werte der Parameterliste"

HINWEIS:

Fehlernummern und Fehlerorte entnehmen Sie der Fehlerliste der "MSD Servo Drive - Geräte Hilfe" (als PDF- Datei im Moog-Downloadbereich verfügbar).

- 6 Inbetriebnahme und Konfiguration des Feldbussystems CANopen
- 6.1 PC-Benutzersoftware Moog DriveAdministrator 5

Die PC-Benutzersoftware **"Moog DriveAdministrator 5"** dient der Inbetriebnahme des

Antriebssystems und der CANopen-Kommunikation.

Technische Daten	Moog DriveAdministrator 5
	 Erstinbetriebnahme Ihres: Antriebssystems CANopen-Gerätenetzwerks
Unterstützung bei folgenden Aufgaben	Schnelle Serieninbetriebnahme mit einer konfigurierbaren Inbetriebnahmedatei (enthält Firmware, Datensatz, Moog PLC-Programm).
	· Bedienung und Diagnose u. a. mit Cockpit und 6-Kanal Oszilloskop.
	Projektverwaltung.

 Tabelle 6.1
 Technische Daten Moog DriveAdministrator 5

HINWEIS:

Nähere Informationen zur Installation und Start der PC-Benutzersoftware **Moog DriveAdministrator 5** entnehmen Sie bitte dem "MDA5 Installationshandbuch" (verfügbar als PDF-Datei im Download-Bereich auf https://www.moogsoftwaredownload.com/msd.html).

Nähere Informationen zur Erstinbetriebnahme und Optimierung der Softwarefunktionen und Regelkreise entnehmen Sie bitte der Betriebsanleitung und der MSD Servo Drive - Geräte Hilfe des jeweiligen Geräts (verfügbar als PDF-Datei im Download-Bereich auf https://www.moogsoftwaredownload.com/msd.html).

6.2 Elektronisches Gerätedatenblatt – EDS-Datei

Die EDS-Datei ist für einen Betrieb der Servoregler im CANopen-Gerätenetzwerk Voraussetzung. Das elektronische Datenblatt (Electronic data sheet, EDS):

- Im "CANopen-Master" (Steuerung) installieren. Dient der Einbindung von MSD Servo Drives in das CANopen-Gerätenetzwerk.
- Steht als Download auf https://www.moogsoftwaredownload.com/msd. html unter "FW" bereit.

HINWEIS:

Mit neuer Firmware kann sich die Version der eds-Datei ändern.

6.3 Inbetriebnahme und Konfiguration

Zur Inbetriebnahme und Konfiguration Ihres Servoreglers und Ihres CANopen-Gerätenetzwerks benötigen Sie folgende Dokumente:

- 1. Betriebsanleitung Ihres Servoreglers.
- 2. MSD Servo Drive Geräte Hilfe.
- MSD Servo Drive Moog DRIVEADMINISTRATOR 5 Programm Hilfe (als kontextsensitive Hilfe im MDA5 implementiert).
- 4. Benutzerhandbuch CANopen/EtherCAT.

6.3.1 Ablauf der Inbetriebnahme und Konfiguration

- 1. Den Servoregler und ergänzende Komponenten gemäß Betriebsanleitung anschließen, verdrahten und konfigurieren.
- 2. Den Servoregler mit 24 V Steuerspannung versorgen.
- Die Erstinbetriebnahme des Servoregler gemä
 ß Online Ger
 äte Hilfe durchf
 ühren (Endstufe, Motor, Geber, Regelung, etc.). Beachten Sie: Die Hardwarefreioabe ENPO und ISDSH an Klemme X4 ist bei Standardoer
 äten nicht beschaltet.
- Timing-Parameter (siehe Seite 31), Baudrate (siehe Seite 31) und Node-ID (siehe Seite 16 im Servoregler parametrieren.
- 5. Einstellungen im Servoregler speichern.
- 6. Servoregler neu starten.
- CANopen-Netzwerk gemäß Kapitel 4.6.1 aufbauen. Beachten Sie: Das Feldbussystem CANopen benötigt eine externe 24 V Spannungsversorgung über die Klemme X32!
- 8. Die EDS-Datei in den CANopen-Master einbinden und Kommunikationseinstellungen seitens des Masters vornehmen (Zykluszeit, Baudrate, Node-ID, Mapping). Beachten Sie: Stellen Sie sicher, dass der CANopen Master das Mapping beim Boot-Up an den Servoregler überträgt!
- 9. Leistungszufuhr (Netz) einschalten.
- Die Betriebsart des Servoregler über einen SDO-Zugriff auf das Objekt 0x6060 (Modes of operation) wählen. Unterstützte Betriebsarten sind im Kapitel 10 aufgeführt.
- **11.** Regelungsqualität testen und gegebenenfalls optimieren.

Tabelle 6.2 Inbetriebnahme des Feldbussystems CANopen

6.4 CANopen-Betrieb über die implementierte CiA402-Funktion des Servoreglers

Die Auswahl der Betriebsart des Servoreglers erfolgt über die implementierte CiA402-Funktion "Modes of operation". (Siehe Kapitel 10 und Kapitel 12).

Nachfolgend sind die individuellen Konfigurationen für den Betrieb des Servoreglers am Feldbussystems CANopen beschrieben.

6.4.1 Auswahl der Betriebsart (Modes of operation)

Bei einer Erstinbetriebnahme parametriert der Anwender den Servoregler mit Motordaten, Regelungseinstellungen, I/O Konfigurationen und anderen Funktionen.

Die Auswahl der Betriebsart erfolgt über das **CiA402 Objekt 0x6060** (**Modes of operation**). Die unterstützten Betriebsarten des Servoregler finden Sie im Kapitel 10 und Kapitel 12.

Die Regelungsart ist an die Betriebsart gekoppelt. Es gibt 3 Regelungsarten:

- 1. Lageregelung.
- 2. Geschwindigkeitsregelung.
- 3. Drehmomentregelung.

Der Anwender kann zwischen verschiedenen Betriebsarten wechseln. Die unterstützten Betriebsarten finden Sie im Objekt 6502h (supported Drive Modul).

6.4.2 Timing-Parameter einstellen

Für die Kommunikation zwischen Servoregler und Steuerung sind 3 Timing-Parameter verantwortlich. Beachten Sie dabei:

- Die 3 Timing-Parameter auf den gleichen Wert (Buszykluszeit) einstellen.
- Das die 3 Timing-Parameter unterschiedliche Einheiten haben.

Parameter	Objektname	Einheit
P 0306	Interner Interpolator – Zykluszeit	ms
P 2015 Periode Kommunikationszyklus / 0x1006 (nur CANopen)		μs
P 2266 Index 0 Index 1	0x60C2 Interpolationszeit Basis Interpolationszeit Exponent	S

Tabelle 6.3 3 Timing-Parameter

6.5 CANopen-Konfiguration

6.5.1 Softwareadresse und Baudrate über den Moog DRIVEADMINISTRATOR einstellen.

Mit den folgenden Parametern die Softwareadresse und die Baudrate des Feldbussystems CANopen einstellen:

	Parameter	Objektname	Beschreibung	
P 2005 COM_CAN_Adr		Softwareadresse CANopen	Adressvorgabe über Parameter, siehe Kap. 4.4.	
	P 2006 COM_CAN_Adr	Baudrate CANopen	Zulässige Baudraten, siehe Kap. 4.6.3.	

Tabelle 6.4 Parameter für Softwareadresse und Baudrate

HINWEIS:

 Die aktive Busadresse finden Sie in der Boot-up-Message und im Parameter P 2058 COM CAN Adr Act (Addition von Software- und Hardwareadresse).

- Werkseinstellung "Baudrate" des MSD Servo Drive: 1000 kBit. Änderungen der Baudrate im Parameter P 2006 COM_CAN_Baudrate wirken erst nach Neustart des Servoreglers.
- 3. Parameter P 2059 COM_CAN_Baudrate_Act. zeigt die aktuelle Baudrate.

6.5.2 Inbetriebnahmehinweise

HINWEIS:

Gründe, weshalb ein Servoregler ein Telegramm nicht beantwortet:

- Der Telegrammrahmen (Baudrate, Datenbreite) der Steuerung (CANopen-Master) ist fehlerhaft.
- Ein Servoregler im CANopen-Gerätenetzwerk erhält die falsche Busadresse oder mehrere Servoregler haben die gleiche Busadresse.
- Falsch aufgebaute serielle Verbindung zwischen Steuerung (CANopen-Master) und Servorealer.
- Die +24 V-Versorgung des CANopen-Anschlusses fehlt oder die Verkabelung ist defekt.

• Der Servoregler befindet sich nicht in den NMT-Netzwerkzuständen "Operational" oder "Pre-Operational". Überprüfung des aktuellen Netzwerkzustands:

Parameter P 2060 COM_CAN_NMT_State

Parameter 2060	NMT - Netzwerkzustand
0	Bootup
1	Init
4	Stopped/Safe OP
5	Operational
127	Pre-Operational

Tabelle 6.5 CANopen Netzwerkzustände

6.5.3 Systemtest an der Steuerung (CANopen-Master)

Aktivieren geänderter Einstellungen:

- Servoregler aus- und wieder einschalten. .
- Initialisierungszeit von einigen Sekunden abwarten (Abhängig von der . Anzahl der Servoregler im CANopen-Gerätenetzwerk)
- Servoregler versendet einmalig Boot-up-Message (ID 700h + Node ID = 701h bei Geräteadresse 1). Ist dies der Fall, funktioniert die Kommunikation.

6.5.4 Parametereinstellung speichern

Konfigurationsdaten des Servoregler sichern (z.B. vor "Zurücksetzen auf Werkseinstellung", siehe nächstes Kapitel):

- Über Moog DRIVEADMINISTRATOR 5 (Siehe PC-Benutzersoftware 1. Moog DRIVEADMINISTRATOR 5 - Programm Hilfe).
- 2. Im Feldbussystem in den Subindex 1 des Objekts 200Bh PARA SetCmd den Wert 1 schreiben

Ist der Speichervorgang ausgeführt, setzt der Feldbus den Subindex 1 des Objekts 200Bh PARA SetCmd automatisch auf den Wert 0. Dies zeigt den Abschluss des Vorgangs und dient als zeitliche Überwachung.

З. Eine weitere Möglichkeit bietet das Objekt 1010h Store parameters, das in der CiA301 spezifiziert ist.

Bitte beachten:

Einige Objekte sind "nicht speichbare Objekte", die die Steuerung (CANopen-Master) automatisch bearbeitet und initialisiert (z.B. Objekt 0x6060 Modes of operation).

6.5.5 Parametereinstellungen auf Werkseinstellung zurücksetzen

Es gibt 2 Wege, um Parametereinstellungen der Servoregler auf Werkseinstellung zu setzen:

- 1. Über Feldbussystem:
 - Auf Subindex 3 des Objekts 200Bh PARA_SetCmd den Wert 1 schreiben. Bitte beachten: Wirkt sich auf die Einstellung "Baudrate/Geräteadresse" aus!
 - Auf Subindex 1 des Objekts 200Bh PARA_SetCmd den Wert 1 schreiben. Dies sichert die Daten des Servoreglers.
 - Die Änderung ist nach einem "Reset-Node"-Kommando oder Geräteneustart wirksam.
- 2. Über Moog DriveAdministrator 5:
 - In der Baumstruktur des MDA den entsprechenden Servoregler wählen.
 - Daten des Servoreglers in Datei sichern (Siehe "Moog DRIVEADMINISTRATOR - Programm Hilfe")
 - Im Menüband unter "Aktives Gerät" den Befehl "Rücksetzen auf Werkseinstellungen" wählen.

HINWEIS:

Nach der "Rücksetzung auf Werkseinstellung", dauert es in beiden Fällen etwa 10 s bis der Servoregler "betriebsbereit" meldet. In dieser Zeit läuft ein Selbsttest und die "Rücksetzung auf Werkseinstellung".

Vorsicht Servoregler während der Initialisierung/des Neustarts nicht ausschalten!

Es droht Verlust der Daten und Einstellungen.

Warten, bis der Servoregler die Initialisierung/den Neustarts vollzogen hat (10 s)!

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 34

7 Inbetriebnahme und Konfiguration des Feldbussystems EtherCAT

7.1 Moog DriveAdministrator 5

Moog DRIVEADMINISTRATOR 5 ist eine PC Benutzersoftware mit grafischer Bedienoberfläche. Sie dient zur Erst- und Serieninbetriebnahme und zur Bedienung des Antriebssystems. Sie ermöglicht ausserdem die Implementierung der EtherCAT-Kommunikation.

Moog DriveAdministrator 5	Aufgaben/ Funktionen
Unterstützt Sie bei folgenden Aufgaben	 Erstinbetriebnahme Ihres Antriebssystems Konfiguration Ihres EtherCAT-Gerätenetzwerks
	Schnelle Serieninbetriebnahme mit einer konfigurierbaren Inbetriebnahmedatei (enthält Firmware, Parameter, Moog PLC-Programm).
	Bedienung und Diagnose u. a. mit Cockpit und 6-Kanal Oszilloskop.
	Projektverwaltung.

HINWEIS:

Nähere Informationen zur Installation und Start der PC-Benutzersoftware **Moog DriveAdministrator 5** entnehmen Sie bitte dem "MDA5 Installationshandbuch" (verfügbar als PDF-Datei im Moog Download-Bereich auf https://www.moogsoftwaredownload.com/msd.html).

Nähere Informationen zur Erstinbetriebnahme und Optimierung der Softwarefunktionen und Regelkreise entnehmen Sie bitte der Betriebsanleitung und der MSD Servo Drive – Geräte Hilfe des jeweiligen Geräts (verfügbar als PDF-Datei im Moog Download-Bereich).

7.2 ESI (xml) – Gerätebeschreibungsdatei

Voraussetzung für den Betrieb des Servoreglers am EtherCAT-Netzwerk ist eine Gerätebeschreibungsdatei = ESI-Datei (xml):

- Im "EtherCAT-Master" (Steuerung) installieren.
- Dient der Einbindung von Servoreglern in das EtherCAT-Gerätenetzwerk.
- Übermittelt Daten, Eigenschaften und Funktionalitäten des Feldbussystems dem "EtherCAT-Master".
- Liefert der Hersteller des EtherCAT Teilnehmers.
- Steht als Download auf
 https://www.moogsoftwaredownload.com/msd.html unter "FW" bereit.

HINWEIS:

Mit neuer Firmware kann sich die Version der ESI-Datei (xml) ändern.

7.3 Inbetriebnahme und Konfiguration

Zur Inbetriebnahme und Konfiguration Ihres Servoreglers und Ihres EtherCAT-Gerätenetzwerks benötigen Sie folgende Dokumente:

- 1. Betriebsanleitung Ihres Servoreglers.
- 2. MSD Servo Drive Geräte Hilfe.
- 3. MSD Servo Drive Moog DRIVEADMINISTRATOR 5 Programm Hilfe (als kontextsensitive Hilfe im MDA5 implementiert).
- 4. Benutzerhandbuch CANopen/EtherCAT.

Ablauf der Inbetriebnahme und Konfiguration

- 1. Den Servoregler und ergänzende Komponenten gemäß Betriebsanleitung anschließen, verdrahten und konfigurieren.
- 2. Den Servoregler mit 24 V Steuerspannung versorgen.
- Die Erstinbetriebnahme des Servoregler gemä
 ß Online Ger
 äte Hilfe durchf
 ühren (Endstufe, Motor, Geber, Regelung, etc.). Beachten Sie: Die Hardwarefreigabe ENPO und ISDSH an Klemme X4 ist bei Standardger
 äten nicht beschaltet.
- **4.** Timing-Parameter im Servoregler parametrieren (Seite Kapitel 7.4.2).
- Normierung und Einheiten im Servoregler analog zur Normierung im Master durchführen. Siehe Kapitel 10.3.
- 6. Einstellungen im Servoregler speichern.
- 7. Servoregler neu starten.
- 8. EtherCAT-Netzwerk gemäß Kapitel 5.5.1 aufbauen.
- 9. Die ESI-Datei (xml) in den EtherCAT Master einbinden und Kommunikationseinstellungen seitens des Masters vornehmen (Zykluszeit, Mapping (aus ESI Datei oder manuell)). Beachten Sie: Stellen Sie sicher, dass der EtherCAT Master das Mapping beim Boot-Up an den Servoregler überträgt!
- 10. Leistungszufuhr (Netz) einschalten.
- **11.** Die Betriebsart des Servoregler über einen SDO-Zugriff auf das Objekt 0x6060 (Modes of operation) wählen. Unterstützte Betriebsarten sind im Kapitel 10 aufgeführt.
- **12.** Regelungsqualität testen und gegebenenfalls optimieren.
- Tabelle 7.2 Inbetriebnahme des Feldbussystems CANopen

7.4 EtherCAT-Betrieb über die implementierte CiA402-Funktion des Servoreglers

7.4.1 Auswahl der Betriebsart (Modes of operation)

Die Auswahl der Betriebsart erfolgt über das **CiA402 Objekt 0x6060** (Modes of operation). Die unterstützten Betriebsarten des MSD Servo Drive finden Sie im Kapitel 10 und Kapitel 12.

Eine Regelungsart ist an die Betriebsart gekoppelt. Es gibt 3 Regelungsarten:

- 1. Lageregelung.
- 2. Geschwindigkeitsregelung.
- 3. Drehmomentregelung.

Der Anwender kann zwischen verschiedenen Betriebsarten wechseln. Bitte nur von Ihrem Servoregler unterstützte Betriebsarten wählen.
7.4.2 Timing-Parameter einstellen

Für die Kommunikation zwischen MSD Servo Drive und Steuerung sind 2 Timing-Parameter verantwortlich. Beachten Sie dabei:

- Die 2 Timing-Parameter auf den gleichen Wert (Buszykluszeit) einstellen.
- Das die 2 Timing-Parameter unterschiedliche Einheiten haben.

Parameter	Objektname	Einheit
P 0306	Interner Interpolator – Zykluszeit	ms
P 2266 Index 0 Index 1	0x60C2 Interpolationszeit Basis Interpolationszeit Exponent	S

Tabelle 7.3 2 Timing-Parameter

HINWEIS:

Für das Feldbussystem EtherCAT den Parameter P 2266 MPRO_402_IntTimePeriod (Objekt 0x60C2) auf die Zykluszeit der

Sollwerte (oder der Telegramme) einstellen.

7.5 EtherCAT-Konfiguration

7.5.1 Inbetriebnahmehinweise

Gründe, weshalb ein Servoregler ein Telegramm nicht beantwortet:

Der Servoregler befindet sich nicht in den NMT-Netzwerkzuständen "Operational" oder "Pre-Operational"!

 Überprüfung des aktuellen Netzwerkzustands: Parameter P 2060 COM_CAN_NMT_State

Parameter P 2060	NMT - Netzwerkzustand
0	Bootup
1	Init
4	Stopped/Safe OP
5	Operational
127	Pre-Operational

Tabelle 7.4EtherCAT Netzwerkzustände

7.5.2 Systemtest an der Steuerung (EtherCAT-Master)

Aktivieren geänderter Einstellungen:

- Servoregler aus- und wieder einschalten.
- Initialisierungszeit von einigen Sekunden abwarten.

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 38

7.5.3 Parametereinstellung speichern

Konfigurationsdaten des Servoregler sichern (z.B. vor "Zurücksetzen auf Werkseinstellung", siehe nächstes Kapitel):

- 1. Über Moog DRIVEADMINISTRATOR 5 (Siehe PC-Benutzersoftware Moog DRIVEADMINISTRATOR 5 Programm Hilfe).
- 2. Im Feldbussystem in den Subindex 1 des **Objekts 200Bh PARA_SetCmd** den Wert 1 schreiben

Ist der Speichervorgang ausgeführt, setzt der Feldbus den Subindex 1 des **Objekts 200Bh PARA_SetCmd** automatisch auf den Wert 0. Dies zeigt den Abschluss des Vorgangs und dient als zeitliche Überwachung.

3. Eine weitere Möglichkeit bietet das **Objekt 1010h Store parameters,** das in der CiA301 spezifiziert ist.

Bitte beachten:

Einige Objekte sind "**nicht speicherbare Objekte"**, die die Steuerung (CANopen-Master) automatisch bearbeitet und initialisiert (z.B. **Objekt 0x6060 Modes of operation**).

7.5.4 Parametereinstellungen auf Werkseinstellung zurücksetzen

Es gibt 2 Wege, um Parametereinstellungen der Servoregler auf Werkseinstellung zu setzen:

- 1. Über Feldbussystem:
 - Auf Subindex 3 des Objekts 200Bh PARA_SetCmd den Wert 1 schreiben.
 Bitte beachten: Wirkt sich auf die Einstellung "Baudrate/Geräteadresse"

aus!

- Auf Subindex 1 des Objekts 200Bh PARA_SetCmd den Wert 1 schreiben.
 - Dies sichert die Daten des Servoreglers.
- Die Änderung ist nach einem "Reset-Node"-Kommando oder Geräteneustart wirksam.

- 2. Über Moog DriveAdministrator 5:
 - In der Baumstruktur des MDA den entsprechenden Servoregler wählen.
 - Daten des Servoreglers in Datei sichern (Siehe "Moog DRIVEADMINISTRATOR - Programm Hilfe")
 - Im Menüband unter "Aktives Gerät" den Befehl "Rücksetzen auf Werkseinstellungen" wählen.

HINWEIS:

Nach der "Rücksetzung auf Werkseinstellung", dauert es in beiden Fällen etwa 10 s bis der Servoregler "betriebsbereit" meldet. In dieser Zeit läuft ein Selbsttest und die "Rücksetzung auf Werkseinstellung".

Vorsicht Servoregler während der Initialisierung/des Neustarts nicht ausschalten!

Es droht Verlust der Daten und Einstellungen.
 Warten, bis der Servoregler die Initialisierung/den Neustarts vollzogen hat (10 s)!

7.6 Ethernet over EtherCAT (EoE)

Zur Minimierung des Verdrahtungsaufwandes, insbesondere im Serienmaschinenbau, empfiehlt es sich die Kommunikation zwischen der PC Benutzersoftware Moog DRIVEADMINISTRATOR 5 und den Servoreglern über Ethernet over EtherCAT (EoE) zu realisieren. Dabei wird die Ethernet TCP/IP Kommunikation mit in den EtherCAT Datenverkehr getunnelt.

Eine separate Netzwerkverbindung zwischen der Service- und Diagnoseschnittstelle X3 (MSD Servo Drive, MSD Servo Drive Funktionale Sicherheit) bzw. X9 (MSD Servo Drive Compact) wird dann nicht benötigt.

HINWEIS:

Aufgrund der Datenbreite wird empfohlen die Erstinbetriebnahme der Achsregler über Ethernet TCP/IP über die Service- und Diagnoseschnittstelle X3 (MSD Servo Drive, MSD Servo Drive Funktionale Sicherheit) bzw. X9 (MSD Servo Drive Compact) durchzuführen!

Die Service- und Diagnoseschnittstelle besitzt im Auslieferungszustand folgende IP Konfiguration:

IP Adresse:	192.168.39.5
Subnetzmaske:	255.255.255.0

Bei der Vergabe der virtuellen IP Adresse (EoE IP Adresse für den EtherCAT Port (X15/ X16) durch den EtherCAT Master ist zu beachten, dass sich diese nicht in demselben Netzwerk (192.168.39.0) befindet!

Bei der Konfiguration des Netzwerks zur Nutzung von EoE gilt es bestimmte Rahmenbedingungen einzuhalten um eine Kommunikation zwischen dem Moog DRIVEADMINISTRATOR 5 und den Servoreglern zu ermöglichen.

Dabei muss zwischen 2 Anwendungsfällen unterschieden werden:

- 1. Moog DRIVEADMINISTRATOR 5 auf Service PC installiert
- 2. Moog DRIVEADMINISTRATOR 5 auf EtherCAT Master PC installiert

7.6.1 Anwendungsfall I: Moog DRIVEADMINISTRATOR 5 auf Service PC installiert

In diesem Anwendungsfall ist der Moog DRIVEADMINISTRATOR 5 auf einem separaten Service PC installiert. Die Netzwerkstruktur ist wie folgt:

Bild 7.1 Anwendungsfall I: Moog DriveAdministrator 5 auf Service PC installiert

Netzwerkkonfiguration Service PC

IP Adresse:	192.168.40.x
Subnetzmaske:	255.255.255.0

Netzwerkkonfiguration EtherCAT Master (Ethernet Serviceschnittstelle)

IP Adresse:	192.168.40.y
Subnetzmaske:	255.255.255.0

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 40

MOOG Id.-Nr.: CA65647-002 Stand: 03/2020

Netzwerkkonfiguration EtherCAT Master (EtherCAT-Schnittstelle)	
IP Adresse:	192.168.38.y
Subnetzmaske:	255.255.255.0

Netzwerkkonfiguration Servoregler (EtherCAT-Schnittstelle, EoE)

IP Adresse:	192.168.38.5
Subnetzmaske:	255.255.255.0

Netzwerkkonfiguration Servoregler (Service- und Diagnoseschnittstelle)

IP Adresse:	192.168.39.5
Subnetzmaske:	255.255.255.0

Im Service PC muss als Administrator über das Kommandofenster eine statische Route zwischen dem Ethernet TCP/IP Netzwerk und dem EoE Netzwerk gelegt werden. Der EtherCAT Master PC muss dazu das IP-Routing unterstützen und auch aktiviert haben.

Der Befehl zum Hinzufügen der statischen Route lautet:

route add destination_network mask subnet_mask gateway_IP

Im aufgeführten Beispiel:

route add 192.168.38.0 mask 255.255.255.0 192.168.40.y

Wichtig für diesen Anwendungsfall ist, dass die Geräteadressen

- 1. Servoregler Service- und Diagnoseschnittstelle
- 2. Servoregler EtherCAT-Schnittstelle und EtherCAT Master EtherCAT-Schnittstelle
- 3. Service PC und EtherCAT Master Ethernet Serviceschnittstelle

in drei unterschiedlichen Netzwerken liegen!

7.6.2 Anwendungsfall II: Moog DRIVEADMINISTRATOR 5 auf Ether-CAT Master PC installiert

In diesem Anwendungsfall ist der Moog DRIVEADMINISTRATOR 5 auf dem EtherCAT Master PC installiert. Die Netzwerkstruktur ist wie folgt installiert:

Bild 7.2 Anwendungsfall II: Moog DRIVEADMINISTRATOR 5 auf EtherCAT Master PC installiert

Netzwerkkonfiguration Service PC

IP Adresse:	192.168.39.x
Subnetzmaske:	255.255.255.0

Netzwerkkonfiguration EtherCAT Master (Ethernet Serviceschnittstelle)

IP Adresse:	192.168.39.y
Subnetzmaske:	255.255.255.0

40

Netzwerkkonfiguration EtherCAT Master (EtherCAT Schnittstelle)

IP Adresse:	192.168.38.y
Subnetzmaske:	255.255.255.0

Netzwerkkonfiguration Servoregler (EtherCAT Schnittstelle, EoE)

IP Adresse:	192.168.38.5
Subnetzmaske:	255.255.255.0

Netzwerkkonfiguration Servoregler (Service- und Diagnoseschnittstelle)

IP Adresse:	192.168.39.5
Subnetzmaske:	255.255.255.0

Für diesen Anwendungsfall werden lediglich zwei unterschiedliche Netzwerke benötigt:

- 1. Service PC und EtherCAT Master Ethernet Serviceschnittstelle, sowie Servicegler Service- und Diagnoseschnittstelle
- 2. Servoregler EtherCAT-Schnittstelle und EtherCAT Master EtherCAT-Schnittstelle

8 Parametrieren der Geräte -CANopen

8.1 Implementierte CiA301 Funktionalität

Das CiA301 Profil bietet eine Sammlung von CAN-Kommunikationsdiensten, ohne die Anwendung genau festzuschreiben. Auf diesen CAN-Kommunikationsdiensten basiert das anwendungsspezifische Antriebsprofil CiA402.

8.1.1 CAN-Kommunikationsdienste im CiA301 Profil

- Boot-up nach CiA301 V4.01 (Guarding Boot-up über Identifier 700h).
- 4 variabel mappbare TxPDOs (transmission type 1 bis 240, 254 und 255 dez möglich).
- 4 variabel mappbare RxPDOs (transmission type 1 bis 240, 254 und 255 dez möglich).
- Ein Emergency Object-Fehlercode nach CiA402 plus herstellerspezifischer Fehlerort und -nummer, Betriebsstunden des Gerätes.
- Ein Sync-Object. Mit Sync-Objekten synchronisiert der NMT-Master (Steuerung), die Slaves des Netzwerkes.
- NMT-Statemachine nach CiA301.
- Nodeguarding und Heart beat.
- Bearbeitungszyklus: Minimale Zykluszeit für PDO-Protokolle (1 ms). Schneller eintreffende Protokolle überschreiben vorangegangene.
- SDO-Protokolle und NMT-Services werden azyklisch verarbeitet. Typische Bearbeitungszeiten liegen zwischen 1 und 5 ms.
- Initialisierungswerte der COB-Ids (Communication objects-Ids) nach Predefined connection set (vordefinierte Einstellung einer Master/Slave Verbindung).
- Zugriff auf Geräteparameter 2000h 5FFFh (expedited/non-expedited)

8.1.2 Communication objects und Objektverzeichnis des CiA301 Profils

Zentrale Instanz aller CANopen-Knoten ist, wie auch bei anderen Feldbusprotokollen, das sogenannte Objektverzeichnis. Jedes CANopen-Gerät benötigt das sogenannte Objektverzeichnis. Dieses Verzeichnis zeigt neben den standardisierten Einträgen, die für das Gerät relevanten "Communication objects".

Eine komplette Übersicht der unterstützten CAN-Objekte (CiA301, CiA402 und herstellerspezifisch) des MSD Servo Drive finden Sie in der eds-Datei auf https://www.moogsoftwaredownload.com/msd.html.

Die nachfolgende Tabelle zeigt eine Übersicht mit wichtigen CiA301 Objekten:

Objekt	Objekt Name	Objekt Code	Тур	Attr.
0x1000	Device_type	VAR	Unsigned32	ro
0x1001	Error_register	VAR	Unsigned8	ro
0x1003	Pre-Defined_error_field one subentry	ARRAY	Unsigned32	ro
0x1005	COB-ID_SYNC	VAR	Unsigned32	rw
0x1006	Communication_cycle_period	VAR	Unsigned32	rw
0x1007	Synchronous_window_length	VAR	Unsigned32	rw
0x1008	Manufacturer device name	String		
0x1009	Manufacturer hardware version	String		
0x100A	Manufacturer software version	String		
0x100C	Guard_time	VAR	Unsigned16	
0x100D	Life_time_factor	VAR	Unsigned8	
0x1010	Store parameters	ARRAY	Unsigned32	rw
0x1011	Restore default parameters	ARRAY	Unsigned32	rw
0x1014	COD-ID_EMCY	VAR	Unsigned32	

Tabelle 8.1 Auszug Objektverzeichnis

Objekt	Objekt Name	Objekt Code	Тур	Attr.
0x1017	Producer_heartbeat_time	VAR	Unsigned16	rw
0x1018	Identity_Object alle 4 Einträge (Seriennummer,) unterstützen	RECORD	Identity (23h)	ro
0x1400	1st_receive_PD0_parameter	RECORD	PDO CommPar	rw
0x1401	2nd_receive_PD0_parameter	RECORD	PDO CommPar	rw
0x1402	3rd_receive_PDO_parameter	RECORD	PDO CommPar	rw
0x1403	4rd_receive_PDO_parameter	RECORD	PDO CommPar	rw
0x1600	1st_receive_PDO_mapping max. 8 objects	RECORD	PDO Mapping (21h)	rw
0x1601	2nd_receive_PDO_mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1602	3rd_receive_PDO_mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1603	4th_receive_PDO_mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1800	1st_transmit_PD0_parameter	RECORD	PDO CommPar (20h)	rw
0x1801	2nd_transmit_PDO_parameter	RECORD	PDO CommPar (20h)	rw
0x1802	3rd_transmit_PDO_parameter	RECORD	PDO CommPar	rw
0x1803	4th_transmit_PDO_parameter	RECORD	PD0 CommPar	rw
0x1A00	1st_transmit_PDO_mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1A01	2nd_transmit_PDO_mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1A02	3rd_transmit_PDO_mapping max. 8 objects	RECORD	PDO Mapping	rw
0x1A03	3rd_transmit_PDO_mapping max. 8 objects	RECORD	PDO Mapping	rw

Tabelle 8.1Auszug Objektverzeichnis

Diese Objekte gestalten die CANopen-Kommunikation flexibel. Eine Beschreibung der einzelnen Funktionalitäten finden Sie nachfolgend.

8.2 Parameterkanal (Service data objects)

Service-Daten-Objekte (SDOs):

- Ermöglichen Schreib- und Lesezugriff auf das Objektverzeichnis des Servoreglers.
- Nutzen das "Multiplexed domain transfer protocol" der CAL Spezifikation. Das "Multiplexed domain transfer protocol" überträgt Daten beliebiger Länge.

Der Servoregler nutzt für den SDO-Transfer einen integrierten SDO-Server und kommuniziert über 2 reservierte "Identifier".

- 1. Receive SDO: 600H
- 2. Transmit SDO: 580H

Beispiel einer SDO-Datenübertragung im "Expedited Mode":

Die CAL-Spezifikation unterscheidet 3 Arten von Protokolldiensten:

- 1. Download-Protokoll (Schreiben)
- 2. Upload-Protokoll (Lesen)
- 3. Abort-Protokoll (Fehler)

Die Down- und Upload-Protokolle unterscheiden zwischen dem:

- "Expedited multiplexed domain protocol" (Zugriff auf Objekte mit einer Datenlänge bis zu 4 Byte) und dem
- "Multiplexed domain protocol" (Zugriff auf Objekte mit beliebiger Datenlänge).

Einträge im Bereich "Steuerfeld" (siehe vorangegangenes Bild) generiert der CANopen-Treiber. Die übertragenen Daten bewirken die Einträge (Näheres zum "Steuerfeld" im CiA301 Profil der CIA).

8.2.1 Parameterdatentypen

i "

HINWEIS:

- Einige Parametereinstellungen zeigt die Bedienoberfläche "Moog DRIVEADMINISTRATOR" als Wertersatztexte an.
 Beispiel: Parameter P 0045 0-MOT_Type = PSM
- Zur Kommunikation über das Feldbussystem für die Wertersatztexte die entsprechenden Zahlenwerte nutzen. Die Bedienoberfläche Moog DRIVEADMINISTRATOR zeigt die Zahlenwerte in Klammern ().
 Beispiel: Parameter P 0045 0-MOT_Type = PSM (1)

Von den Servoreglern unterstützte Parameterdatentypen:

Parameter- datentyp	Wertebereich	Beschreibung
USIGN8	0 255	
USIGN16	0 65 535	
USIGN32	0 4 294 967 295	
INT8	-128 127	
INT16	-32 768 32 767	
INT32	-2 147 483 648 2 147 483 647	
FLOAT32	-3,4 E ³⁸ 3,4 E ³⁸	siehe IEEE
STRING		

Tabelle 8.2Parameterdatentypen

8.2.2 Datentypen im Steuerprotokoll

Das SDO-Protokoll zeigt Datentypen:

- Vorzeichenrichtig.
- Als 32 Bit Größen.
- Im Intel-Format.

Datenbyte des SDO-Protokolls	3	4	5	6
USIGN8 / INT8* USIGN16 / INT16* USIGN32 / INT32	Low Word LowByte	Low Word HighByte	High Word LowByte	High Word HighByte
FLOAT32		IEE-	Format	
STRING				
* Vorzeichenrichtig gefü	Ilt (00H und FFH)			

 Tabelle 8.3
 Darstellung der Datentypen im SDO-Protokoll

8 Parametrieren der Geräte - CANopen

MOOG Id.-Nr.: CA65647-002 Stand: 03/2020

8.2.3 Geräteparameter

Geräteparameter über Parameternummer ansprechen.

Neben den standardisierten Objekten (nach CiA301 und CiA402) hat das CANopen-Profil einen Bereich für herstellerspezifische Einträge (Geräteparameter) definiert. Dieser Bereich liegt zwischen **2000 h und 5FFF h** (CiA301). Um beispielsweise den Parameter **P 0455 MOT_FNOM** (Nennfrequenz des Motors) zu lesen oder zu schreiben:

Objektindex aus 2000 h + Parameternummer (Hex) bilden.
 2000 h + 1C7 h (0455 Hex) = 21C7 h

HINWEIS:

Objekte der CiA301 (1000h ... 1FFFh) und der CiA402 (6000h ... 9FFFh):

- Kann der Master auch mit den Objektnummern ansprechen, auch wenn der Moog DRIVEADMINISTRATOR diese mit Geräteparameternummern anzeigt.
- Nicht über die Herstellerspezifischen Objekte ansprechen (Nicht empfehlenswert).

Beispiel:

Das Objekt **1000h** – Device Type existiert im CiA301-Profil und als Geräteparameter mit der Parameternummer **2011**. Via CANopen (oder EtherCAT) funktioniert der Zugriff auf 2 Arten gleichzeitig. Um den Lese-/Schreibzugriff eindeutig zu gestalten, dieses Objekt über die profilspezifische Objektnummer **1000h** (gemäß CiA301) ansprechen.

8.2.4 Beispiel:

Lesezugriff auf den Geräteparameter des Datentyps "String", Parameter 3 DV_DeviceAliasName

Folgende Tabelle zeigt:

- Den Parameter 3 DV_DeviceAliasName des MSD Servo Drive.
- Den zu übertragenen String "X-Axis".
- Die Hexadezimalen Einträge der Zahlenwerte.

TIME		Direct-	irect- Byte					Kommontor				
	שו	ion		0	1	2	3	4	5	6	7	Kommentar
18.992445	Тх	601	8	40	03	20	00	00	00	00	00	Objekt 2003h (= Parameter 3) lesen
18.992972	Rx	581	8	41	03	20	00	64	00	00	00	Antwort: 64h> 100Bytes übertragen
35.514341	Tx	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 1
35.514594	Rx	581	8	00	58	2d	41	78	69	73	00	Antwort Segment 1 - enthält "X-Axis"
36.269620	Тх	601	8	70	00	00	00	00	00	00	00	Anforderung Segment 2
36.270175	Rx	581	8	10	00	00	00	00	00	00	00	Antwort Segment 2
36.982385	Тх	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 3
36.982664	Rx	581	8	00	00	00	00	00	00	00	00	Antwort Segment 3
37.686447	Tx	601	8	70	00	00	00	00	00	00	00	Anforderung Segment 4
37.686706	Rx	581	8	10	00	00	00	00	00	00	00	Antwort Segment 4
38.421344	Тх	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 5
38.421604	Rx	581	8	00	00	00	00	00	00	00	00	Antwort Segment 5
39.053526	Тх	601	8	70	00	00	00	00	00	00	00	Anforderung Segment 6
39.053787	Rx	581	8	10	00	00	00	00	00	00	00	Antwort Segment 6
39.749081	Тх	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 7
39.749347	Rx	581	8	00	00	00	00	00	00	00	00	Antwort Segment 7
40.428981	Тх	601	8	70	00	00	00	00	00	00	00	Anforderung Segment 8
40.429249	Rx	581	8	10	00	00	00	00	00	00	00	Antwort Segment 8
41.085839	Тх	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 9
41.086198	Rx	581	8	00	00	00	00	00	00	00	00	Antwort Segment 9

ТІМЕ		Direct-			Byte							Kommontor
	שו	ion	DLC	0	1	2	3	4	5	6	7	Kommentar
41.740755	Тх	601	8	70	00	00	00	00	00	00	00	Anforderung Segment 10
41.741148	Rx	581	8	10	00	00	00	00	00	00	00	Antwort Segment 10
42.514034	Тх	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 11
42.514294	Rx	581	8	00	00	00	00	00	00	00	00	Antwort Segment 11
43.172512	Тх	601	8	70	00	00	00	00	00	00	00	Anforderung Segment 12
43.172787	Rx	581	8	10	00	00	00	00	00	00	00	Antwort Segment 12
43.908571	Тх	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 13
43.908831	Rx	581	8	00	00	00	00	00	00	00	00	Antwort Segment 13
44.668466	Тх	601	8	70	00	00	00	00	00	00	00	Anforderung Segment 14
44.668740	Rx	581	8	10	00	00	00	00	00	00	00	Antwort Segment 14
53.884044	Тх	601	8	60	00	00	00	00	00	00	00	Anforderung Segment 15
53.884414	Rx	581	8	0b	00	00	00	00	00	00	00	Antwort Segment 15 - Keine weiteren Segmente

Erklärung der übertragenen ASCII-Werte:

- Das 1. Segment des Parameters überträgt den 6-Byt-String "X-Axis".
- Die folgenden Segmente des Parameters enthalten "Nullen".

	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Übertragene Bytes (Hex)	58	2d	41	78	69	73
Interpretation (ASCII)	Х	-	Α	x	i	s

8.2.5 Parameterdatensatz-Download mit CANopen

Es gibt 2 Arten einen Parameterdatensatz vom CANopen-Master zum MSD Servo Drive zu transferieren:

- Als SDO-Transfer (Objektweise). 1.
- Als Datensatz-Download (Block ohne Logikprüfung). 2.

Bei jeder Übertragung eines Parameters prüft der Servoregler, ob der Parameter zu seinem bestehenden Datensatz passt. Die Prüfung neuer Parameterwerte erfasst auch bestehende Parameterwerte (Plausibilitätsprüfung oder Logikprüfung), von Parametern die in funktioneller Verbindung stehen.

Verweigert der Servoregler einen Parameter aus einem gültigen Datensatz beim objektweisen SDO-Transfer, der Datensatz-Download ohne Logikprüfung Abhilfe schaffen.

Parameterdatensatz über CANopen ohne Logikprüfung zum Servoregler übertragen:

Schritt	Aktion
1.	 Download ohne Logikprüfung anmelden, dazu Parameter 11[4] PARA_SetCmd Register upload mit dem Wert 1 beschreiben (Logikprüfung ist deaktiviert).
2.	 Parameter des Datensatzes werden sequentiell zum Servoregler übertragen. Achtung: Basis-Pr üfmechanismen sind trotz abgeschalteter Logikpr üfung aktiv. Beispiel: Wird die Wertebereichsgrenze durch den Download eines Parameters nicht eingehalten, wird das SDO-Protokoll abgelehnt (Abort Message).
3.	 Download beenden und Logikprüfung aktivieren, dazu Nach der Übertragung des Parameterdatensatzes, Parameter 11[4] PARA_SetCmd Register upload auf den Wert 0 setzen. Die Logikprüfung ist aktiviert. Im Fehlerfall erhält der Anwender eine "Emergency Message".
4.	Speichern des Parameterdatensatzes

Fehlbedienung beim Parameterdatensatz-Download: Warnung

•

Kann zu unkontrolliertem Verhalten oder zur Zerstörung des Antriebssystems, im schlimmsten Fall zu Körperverletzungen oder Tod führen!

Download des Parameterdatensatzes: • Bei stillstehendem, ausgeschaltetem Antriebssystem durchführen! • Für die Dauer des Downloads gegen Einschalten sichern!

8.3 Prozessdaten (PDO)

Prozessdaten Objekte dienen dem Datentransfer definierter Daten über das Mapping. Die "Transmission Types" definieren die Übertragungsart.

8.3.1 Prozessdaten (PDO) - Transmission Types

Das CANopen-Profil CiA301 definiert bei der PDO-Übertragung verschiedene "Transmission Types". Die "Transmission Types" und die "Ereignissteuerung" lassen sich getrennt einstellen für alle unterstützten:

- RxPDOs (vom Servoregler empfangene Prozessdaten) und
- TxPDOs (vom Servoregler gesendete Prozessdaten).

Der Servoregler unterstützt 3 Transmission Types:

1. Acyclic Synchronous Type No. 0 h

PDOs dieser Übertragungsart arbeiten nicht zyklisch, sondern ereignisgesteuert mit Bezug zum "SYNC-Objekt".

Für den Empfang gilt:

- Regelmäßige RxPDO-Daten werden nicht erwartet.
- Wird ein RxPDO empfangen, wird es nach Ankunft des nächsten "SYNC-Objekts" übernommen.

Für das Senden (TxPDO Daten) gilt:

 Wenn das Ereignis zum Senden anliegt, wird auf den nächsten Zeitpunkt eines "SYNC-Objekts" gewartet und dann gesendet (ab Firmware Version 2.15-00).

2. Cyclic Synchronous Types No. 1 h bis F0 h

PDOs dieser Übertragungsart arbeiten zyklisch, mit zeitlichem Bezug zum "SYNC-Objekt".

Für den Empfang gilt:

 Ein Zahlenwert (1 h bis F0 h) gibt die Anzahl an übertragenen SYNC-Objekten an, bei dem ein RxPDO erwartet und übernommen wird.

Für das Senden (TxPDO Daten) gilt:

 Nach Übernahme des RxPDO wird ein TxPDO bestimmter Anzahl (1 h bis F0 h) gesendet.

3. Asynchronous Types No. FE h bis FF h

PDOs dieser Übertragungsart arbeiten asynchron und ereignisgesteuert. Der Servoregler übernimmt jedes RxPDOs nach Empfang sofort und sendet daraufhin ein TxPDO.

Besonderheiten:

- Das SYNC-Objekt ist bei dieser Übertragungsart irrelevant.
- Das Ereignis des Typs FF h ist im zugehörigen Geräteprofil definiert.

HINWEIS:

Einstellung der Transmission Types erfolgt über die CANopen-Objekte:

- 1400 h für RxPDO
- 1800 h für TxPDO

HINWEIS:

Ereignissteuerung aktivieren:

• Transmission Types auf "Asynchronous Types" (FE h oder FF h) einstellen.

Funktion der Ereignissteuerung

Prozessdaten (PDO) "ereignisgesteuert versenden" heißt, dass Daten dann gesendet werden, wenn sie anfallen. Ein Ereignis um TxPDO zu versenden, ist zum Beispiel eine Änderung eines Bits innerhalb der TxPDO. Das heißt, die Inhalte der gemappten Daten dieser TxPDO werden geändert.

Unter **PDO Mapping** versteht man die Abbildung der Applikationsobjekte (Echtzeitdaten) aus dem Objektverzeichnis in die Prozessdatenobjekte.

HINWEIS:

Änderungen von TxPDOs Inhalten haben keinen Einfluss auf die ereignisgesteuerte Versendung anderer TxPDO Daten.

Beispiel:

- TxPDO1 enthält das gemappte Statuswort 6041 h.
- TxPDO2 enthält die aktuelle Istposition.

Änderungen am gemappten Statuswort 6041 h der TxPDO1 können nicht als Ereignis dienen, um TxPDO2 Daten zu versenden. Ist dies erforderlich:

• Das Statuswort 6041 h in TxPDO2 mappen.

Auswahl der Ereignisse:

Jede Änderung der Bits in den TxPDO-Daten des MSD Servo Drive kann als Ereignis definiert werden:

- Mit der Voreinstellung (Default) des MSD Servo Drive werden alle Bits (maximum 64 Bit = 8 Byte) auf Änderungen überwacht und damit als Ereignis ausgewertet.
- Um die Ereignissteuerung bei einzelnen Bits auszublenden, werden die Bits mit Ereignismasken (event masks) versehen.

Der **Parameter P 2007 (COM_301_EvMask)** beinhaltet Ereignismasken, die einzelne Bits der TxPDO-Daten für Ereignisse sperren. TxPDO-Daten haben Subindizes. Jeder Subindex deckt 32 Bit der TxPDO-Daten ab.

Aufteilung der Subindizes im Feldparameter P2007 - COM_301_EvMask "Event mask for asynchronous transmit pdos"

Subindex	Name	Wert	Beschreibung	Тур
0	EvMsk_TxPdo1L	FFFFFFFh	Event mask for txpdo 1 Byte 0-3	uint32
1	EvMsk_TxPdo1H	FFFFFFFh	Event mask for txpdo 1 Byte 4-8	uint32
2	EvMsk_TxPdo2L	FFFFFFFh	Event mask for txpdo 2 Byte 0-3	uint32
3	EvMsk_TxPdo2H	FFFFFFFh	Event mask for txpdo 2 Byte 4-8	uint32
4	EvMsk_TxPdo3L	FFFFFFFh	Event mask for txpdo 3 Byte 0-3	uint32
5	EvMsk_TxPdo3H	FFFFFFFh	Event mask for txpdo 3 Byte 4-8	uint32
6	EvMsk_TxPdo4L	FFFFFFFh	Event mask for txpdo 4 Byte 0-3	uint32
7	EvMsk_TxPdo4H	FFFFFFFh	Event mask for txpdo 4 Byte 4-8	uint32

Tabelle 8.4 Feldparameter P2007

Beispiel: Anwendung der Masken

Um die unteren 16 Bit der TxPDO1 als Ereignis zuzulassen, die Subindizes des Feldparameter **P2007** wie folgt beschreiben:

- Subindex 0 (Ereignis Maske TxPDO1L Bytes 0 3) = 0000 FFFF h
- Subindex 1 (Ereignis Maske TxPDO2H Bytes 4 7) = 0000 0000 h

Minimale Zeit aufeinanderfolgender TxPDO gleichen Typs

Neben der Möglichkeit einzelne Inhalte einer TxPDO als Event zu sperren, kann auch die minimale Zeit zwischen 2 TxPDOs gleichen Typs eingetragen werden. Diese "inhibit time" kann pro TxPDO über die Objekte 0x1800 (TxPDO1), 0x1801 (TxPDO2), 0x1802 (TxPDO3) und 0x1803 (TxPDO4) Subindex 03 (inhibit time) eingetragen werden.

Die Einheit der inhibit time ist [100µs], wobei als Wert für die Firmware nur ganzzahlige Vielfache von 1ms zulässig sind. Kleinste Schritte bei der Konfiguration der inhibit time sind 10, 20, 30, ... , also in 1ms (10*100µs) Schritten.

HINWEIS:

1 Um der

Um TxPDO-Daten zyklisch zu versenden, im **Subindex 5 (event timer)** der **Objekte**

- 0x1800 (TxPDO1)
- 0x1801 (TxPDO2)
- 0x1802 (TxPDO3)
 0x1802 (TxPDO3)

• 0x1803 (TxPDO4)

eine Zykluszeit in ms einstellen.

8.3.2 PDO-Mapping

Erklärungen zum Prozessdaten-Mapping:

- Verfahren um Prozessdaten aus unterschiedlichen Datenquellen und Datenstrukturen in einer einheitlichen Datenquelle und Datenstruktur zu einigen.
- Für alle 4 RxPDOs und 4 TxPDOs im Servoregler sind die Parameter variabel mappbar.

- Das Mapping funktioniert gemäß den Definitionen des CANopen-Kommunikationsprofils CiA301.
- Der herstellerspezifische Parameterbereich (2001 h bis 5FFF h) beinhaltet einen großen Teil gerätespezifischer Parameter. Die gerätespezifischen Parameter (Objekte):
 - Können ebenfalls in den PDOs gemappt werden.
 - Finden Sie im Elektronischen Gerätedatenblatt EDS-Datei des MSD Servo Drive.
- 8.3.3 Mapping-Hinweise

HINWEIS:

Der MSD Servo Drive hat keine Mapping-Selektoren. In der Werkseinstellung des MSD Servo Drive enthalten die PDOs kein Mapping (Mapping = 0). Das heißt, bevor die Kommunikation mit PDOs stattfindet, muss:

- Das Mapping über die Steuerung zum Servoregler geschrieben werden,
- Oder eine Übertragung des Datensatzes erfolgen.
 - Der MSD Servo Drive speichert Kommunikationseinstellungen, wie z.B. Mapping oder Transmission Types in Datensätzen. Diese Datensätze können komplett transferiert werden und brauchen nicht neu geschrieben werden.

Für das Mapping relevante Objekte:

RxPDOs	TxPDOs
1600 h RxPD01 Mapping	1A00 h TxPD01 Mapping
1601 h RxPD02 Mapping	1A01 h TxPD02 Mapping
1602 h RxPD03 Mapping	1A02 h TxPDO3 Mapping
1603 h RxPDO4 Mapping	1A03 h TxPDO4 Mapping

HINWEIS:

Jedes PDO kann maximal:

- 8 Objekte mappen.
- 8 Byte mappen.

Tabelle 8.5 Mapping relevante Objekte

- Bitte Beachten! (ab Firmware V124.15-02 nicht mehr erforderlich)
- PDO mit einer geraden Anzahl von Bytes belegen!
- Bei einer ungeraden Anzahl von Bytes, dass PDO mit einem "Dummy Byte" im Parameter **P2055 "COM_301_U8" (Objekt 0x2807)** auffüllen!

8.4 Heartbeat-Funktion

8.4.1 Konfiguration der Fehlerkontrollmechanismen

Für das Feldbussystem CANopen existieren 2 Fehlerkontrollprotokolle:

- 1. Die "Heartbeat-Funktion"
- 2. Die "Node Guarding-Funktion"

HINWEIS!

Für Neukonstruktionen empfiehlt die CiA (CAN in Automation - Nutzerorganisation) die Heartbeat-Funktion. Der Vorteil des Heartbeat- Protokolls ist, dass keine Anforderungstelegramme (remote frames) gesendet werden müssen. Dies senkt die Busauslastung des CAN-Netzwerks.

Die Funktionen "Heartbeat" und "Node Guarding" im Servoregler nicht gleichzeitig nutzen!

8.4.2 Heartbeat

Der MSD Servo Drive Servoregler:

- Unterstützt die Heartbeat-Funktion nach CiA301. Die Heartbeat-Funktion arbeitet gemäß den Zuständen und den Zustandsübergängen der Netzwerknoten (NMT-Zustandsmaschine).
- Kann sowohl als **Heartbeat Producer**, wie auch als **Heartbeat Consumer** eingesetzt werden. Dabei ist die gleichzeitige Verwendung des MSD Servo Drive als **Heartbeat Producer** und **Heartbeat Consumer** möglich.
- Heartbeat Producer: Als Heartbeat Producer sendet der Servoregler mit der in Objekt 1017 Producer Heartbeat Time definierten Zeit Heartbeat-Protokolle an die Steuerung.
- Heartbeat Consumer: Als Heartbeat Consumer überwacht der Servoregler Heartbeat Telegramme von der Steuerung, deren Node-ID zusammen mit der Überwachungszeit in Objekt 1016 Subindex 1 Consumer Heartbeat Time eingetragen werden muss. Unterstützt wird vom MSD Servo Drive die Überwachung von <u>einem</u> Heartbeat Producer.

Aufbau Objekt 1016h Consumer heartbeat time

31	24	23	16 15		0
reserved	(00h)	Node-ID)	Heartbeat time	
MSB					LSB

- Bild 8.1 Objekt 1016 h Consumer heartbeat time
 - Das **Objekt 1016 h Consumer Heartbeat Time** zeigt die erwarteten Heartbeat-Zykluszeiten an.
 - Von **Objekt 1016 h** werden die Subindizes 0 und 1 unterstützt. D.h. es kann nur ein **Heartbeat Producer** überwacht werden.
- Die Consumer Heartbeat Time sollte größer sein als die entsprechende Heartbeat Producer Time.
- Die Überwachung des **Heartbeat Producer** beginnt nach dem Empfang des ersten **Heartbeat**.
- Vor dem Empfang des ersten **Heartbeats** ist der Status des Heartbeat Producers unbekannt.

Funktionsweise des Heartbeat-Protokolls

- - In das Objekt 1017 h Producer Heartbeat Time den Wert f
 ür die Zeitabst
 ände (in ms) eintragen.
 - Ist der Wert der Zeitabstände im Objekt 1017 h Producer Heartbeat
 Time = 0, wie in der Werkseinstellung, ist die Heartbeat-Funktion inaktiv.
- Der Heartbeat Consumer erwartet in den eingestellten Zeitabständen die Heartbeat-Protokolle vom Heartbeat Producer.
- Die Heartbeat-Protokolle starten sofort nach Eintrag der Heartbeat Producer Time.
- Wird der Servoregler mit der Heartbeat Producer Time

 ≠ 0 eingeschaltet, startet das Heartbeat-Protokoll mit dem NMT-Zustandsübergang Initialising -> Pre-Operational und die Bootup Message wird als erstes Heartbeat-Protokoll angesehen.
- Treffen Heartbeat-Protokolle nicht in der eingestellten Zeit im Heartbeat Consumer ein, löst der Heartbeat Consumer ein Ereignis (Heartbeat Event) aus.

Bild 8.2 Heartbeat-Protokoll

		Bit 0 6	NMT - Netzwerkzustand
r:	reserviert (Bit 7, innerhalb 0)	0	Bootup
S:	Status des Heartbeat Producers	4	Stopped/Safe OP
		5	Operational
		127	Pre-Operational

8.5 Telegrammausfall Überwachung

Der Servoregler besitzt die Funktion:

- Eintreffende Sync-Telegramme oder RxPDOs zu überwachen.
- Nach einem zuvor konfiguriertem Zeitraum in dem Sync-Telegramme oder RxPDOs ausfallen, eine Fehlermeldung auszulösen.

Parameter zur Konfiguration der Telegrammausfall Überwachung:

Parameter-ID	Name	Beschreibung
P 2061	COM_CAN_Timeout_Type	Auswahl des zu überwachenden Signals: • 0 = Sync • 1 = RxPD0
P 2062	COM_CAN_Timeout_Value	Wert eingeben: • Timeout-Zeit [ms] • 0 = Überwachung inaktiv

Tabelle 8.6 Parameter "Telegrammausfall Überwachung"

Der Parameter **P 2061 COM_CAN_Timeout_Type** dient der Auswahl des zu überwachenden Signals:

- Das eintreffendes Sync-Signal oder
- Die RxPDOs.

In den Parameter P 2062 COM_CAN_Timeout_Value:

- Zeit (in ms) eingeben, die vom letzten konfigurierten Signal bis zum Erkennen eines Telegrammausfalls.
- Den Wert "0" für "Überwachung inaktiv" eingeben.

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 54

9 Parametrieren der Geräte -EtherCAT

Implementierte EtherCAT-Funktionalität 9.1

Nachfolgende Grafik zeigt die Struktur der EtherCAT-Technologie in Anlehnung an das OSI-7-Schichtenmodell:

Bild 9.1 Struktur der EtherCAT-Technologie

Physical Layer

- Basiert auf der IEEE802.3/100 BaseTX Ethernet-Physik.
- Definiert elektrische Eigenschaften des EtherCAT-Feldbussystems, wie:
 - Steckverbinder.
 - Kabellänge und Eigenschaften,
 - Bit-Kodierung und Bit-Timing.

Data Link Layer

- Ist geteilt in "Mailbox" und "Process Data".
- Verbindet Netzwerkteilnehmer. .
- Vergibt Prioritäten an Datenpakete. .
- Erledigt Fehlerüberwachung und Fehlerkorrekturen. .

Mailbox

- Enthält alle Dienste, deren Ausführung und Inhalte nicht zeitkritisch in ٠ Prozessdaten eingreifen.
- Nutzt den SDO-Kanal, um Servicedaten zu den Antriebsparametern zu . liefern.
- . Basis für EoE-Dienste und das Fehlerhandling (Emergency-Telegramme).
- Im MSD Servo Drive implementiert (CoE): .
 - SDO/Abort
 - Initiate SDO Download
 - Download SDO Segment
 - Initiate SDO Upload
 - Upload SDO Segment
 - Abort SDO Transfer
 - Geräteparameter wählen über Objekt ID 2000 h + Parameternummer.

Emergency

- Der Emergency Dienst übermittelt Fehlermeldungen. .
- Im Gegensatz zum Feldbussystem CANopen (Slave sendet Fehlermeldun-. gen eigenständig) holt der EtherCAT-Master Fehlermeldungen ab.
- Der MSD Servo Drive unterstützt gemäß CiA402 Geräteprofil . "Error Codes". Inhalt und Aufbau entnehmen Sie dem Kapitel 13.

SDO Information Service

- Der EtherCAT-Master liest über den SDO Information Service das Objektverzeichnis der EtherCAT-Slaves.
- Hat im MSD Servo Drive Zugriff auf die Objektliste. Der EtherCAT-Master bekommt Informationen über unterstützte Objekte des EtherCAT-Slaves, wie:
 - Datentypen
 - Zugriffsmöglichkeiten, etc.
- Ist im MSD Servo Drive eine Alternative zur EDS-Datei (Elektronisches Gerätedatenblatt) des Feldbussystems CANopen.

EoE - Ethernet over EtherCAT

- Verwendet z.B. die Funktion "Tunnelung von Standard Ethernet Frames in EtherCAT Frames". Mit dieser Funktion überträgt EtherCAT Protokolle, wie TCP/IP.
- EoE-Funktionalitäten im MSD Servo Drive:
 - Initiate EoE request.
 - Initiate EoE response.
 - EoE fragment request.
 - EoE fragment response.

Distributed Clocks - Verteilte Uhren

- Jeder EtherCAT-Slave hat eine Uhr (Distributed Clock). Ein Impuls synchronisiert die Distributed Clocks im EtherCAT-Netzwerk.
- Als "Reference Clock" (Zeitgeber) dient die Uhr eines EtherCAT-Slaves im EtherCAT-Netzwerk.
- Über die Steuerung konfigurieren Sie die "Distributed Clocks". Ein Vielfaches der Zeitbasis (125 μs) als Zykluszeit einstellen!

ESI_Datei - EtherCAT Slave Information

- XML-Datei.
- Im "EtherCAT-Master" (Steuerung) installieren.
- Zur Anbindung des EtherCAT-Slaves an den EtherCAT-Master (Steuerung) im EtherCAT-Netzwerk.
- Enthält die Konfiguration (Mapping, etc.) der jeweiligen Betriebsarten und liegt unter der Rubrik "Firmware" im <u>Moog Downloadbereich</u>.

Process Data (CiA301)

- Zyklische Übertragung von gemappten Prozess Daten Objekten (PDO), wie:
 - Positionswerte.
 - Geschwindigkeitswerte.
 - Drehmoment-Sollwerte und Drehmoment-Istwerte.
- Prozessdaten-Profil:
 - 4 RxPDOs.
 - 4 TxPDOs.
- Übertragungslänge maximal 8 Byte pro PDO.
- Variables Mapping gemäß CiA301 (vgl. CANopen).
- Zykluszeiten:
 - Übertragung zyklischer Positionssollwerte mit maximal 8 kHz (125 µs).
 - Übertragung zyklischer Geschwindigkeitssollwerte mit maximal 8 kHz (125 µs).
 - Übertragung zyklischer Drehmomentsollwerte mit maximal 8 kHz (125 μs).

- Das PDO mit einer geraden Anzahl von Bytes belegen!
- Bei einer ungeraden Anzahl von Bytes, dass PDO mit einem "Dummy Byte" im Parameter P 2055 "COM_301_U8" (Objekt 0x2807) auffüllen!

Application Layer

- Nutzt Kommunikationsobjekte ("Communication Objects", COB) zum Datenaustausch zwischen den Netzwerkteilnehmern. Kommunikationsobjekte sind elementarer Bestandteil zur Erstellung von CANopen-Anwendungen.
- Umfasst auch das Objektverzeichnis (Object Dictonary). Das Objektverzeichnis:
 - Basiert auf dem CANopen-Profil und lässt den Anwender auch über EtherCAT-Systeme auf Objekte zugreifen.
 - Ist Basis für SDO und PDO Zugriffe auf den Servoregler.
- Der MSD Servo Drive unterstützt:
 - EoE-Dienste (Ethernet over EtherCAT).
 - CoE-Dienste (CAN over EtherCAT).

Application

• Der MSD Servo Drive nutzt das Geräteprofil CiA402

9.2 EtherCAT-Netzwerkmanagement (NMT)

- Funktionen des EtherCAT-NMT:
 - Initialisierung, Fehlerüberwachung, Statusüberwachung des Netzwerks und Überwachung der einzelnen Netzwerkteilnehmer.
- Konform zum Feldbussystem CANopen. Im Feldbussystem EtherCAT ist der Zustand "Stopped" durch "Safe Operational" ersetzt.
- Je nach Funktionsumfang der Steuerungssoftware werden einzelne Zustandsübergänge automatisch oder über die PLC ausgeführt.

Zustand	Beschreibung				
Init	nitialisierung, Gerätestart.				
Pre-Operational	Gerät bereit zur Parametrierung. Mailbox Kommunikation funktioniert.				
Safe-Operational	PDO Eingangsdaten (TxPDO Gerät) werden gelesen. PDO Ausgangsdaten (RxPDO Gerät) werden ignoriert.				
Operational	Zyklische E/A-Kommunikation. PDO-Ausgangsdaten (RxPDO Gerät) werden bearbeitet.				
Bootstrap (optional)	 Über den Zustand "Init" erreichbar. Über den Zustand "Bootstrap" Update der Slave-Firmware vornehmen. Die Mailbox-Kommunikation ist aktiv aber auf das FoE-Protokoll (File-Access over EtherCAT) beschränkt. 				

Tabelle 9.1 EtherCAT-NMT-Zustandsbeschreibung

Nr.	Zustands- übergang	Aktion			
1	(OI)	 Stop "Output Update" Stop "Input Update" Stop "Mailbox Communication" 			
2	(IP)	Start "Mailbox Communication"			
3	(PI)	Stop "Mailbox Communication"			
4	(OP)	 Stop "Output Update" Stop "Input Update" 			
5	(PS)	Start "Input Update"			
6	(SP)	Stop "Input Update"			
7	(SO)	Start "Output Update"			
8	(OS)	Stop "Output Update"			
9	(SI)	 Stop "Input Update" Stop "Mailbox Communication" 			
10	(IB)	Start "Bootstrap Mode"			
11	(BI)	Restart Device			

Tabelle 9.2Beschreibung der EtherCAT-NMT-Zustandsübergänge

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 58

10 Implementierte CiA402-Funktionalität des Servoreglers

Der Servoregler unterstützt Betriebsarten und deren Funktionen nach dem CiA402 Geräteprofil.

Im MSD Servo Drive implementierte Betriebsarten nach CiA402:

Nr.	Betriebsarten mit Profilgenerierung im Servoregler	
1	Profile position mode	Seite 73
2	Velocity mode (U/F Betrieb)	Seite 76
3	Profile velocity mode	Seite 77
4	Reserviert	-
5	Reserviert	-
6	Homing mode	Seite 78

Nr.	Betriebsarten mit Profilgenerierung in der Steuerung	
7	Interpolated position mode	Seite 80
8	Cyclic synchronous position mode (nur EtherCAT)	Seite 81
9	Cyclic synchronous velocity mode (nur EtherCAT)	Seite 82
10	Cyclic synchronous torque mode (nur EtherCAT)	Seite 83

10.1 Gerätesteuerung und Zustandsmaschine

Die Steuerung des Servoreglers erfolgt über die in der CiA402 definierte DRIVECOM-Zustandsmaschine.

10.1.1 Allgemeine Information

Die DEVICE CONTROL FUNCTION überwacht alle Funktionen des Servoreglers und ist unterteilt in:

- Ansteuerung der Zustandsmaschine (State machine)
- Betriebsartspezifische Funktionen (Operation mode)

Bild 10.1 Device controlling

Der Zustand des Servoreglers wird durch das:

- Steuerwort bedient.
- Statuswort angezeigt.

Prozess-Daten-Objekte (PDO) und Service-Daten-Objekte (SDO) im Netzwerk steuern den Servoregler.

Die Zustandsmaschine wird durch

- das Steuerwort bedient und
- interne Ereignisse, wie z. B. Fehler beeinflusst.

10.1.2 Zustandsmaschine

Die Zustandsmaschine beschreibt:

- Den Antriebsstatus.
- Die Steuermöglichkeiten durch den Master (Anwenderkommandos).
- Interne Fehlerzustände.

Der Einzelstatus des Servoreglers

- zeigt ein spezifisches internes oder externes Verhalten und
- schränkt zugleich die Steuerkommandos ein.

Beispiel:

Eine Punkt-zu-Punkt-Positionierung ist nur im Zustand "Operation enabled" möglich.

Bild 10.2 Zustandsmaschine

Die Zustandsmaschine durchläuft Übergänge und Zustände (siehe "Schema Zustandsmaschine"). Die Übergänge und Zustände sind abhängig von:

- Der Einstellung des Geräteprofils im Servoregler (z.B. Steuerwort).
- Dem verwendeten Bussystem.

Der aktuelle Zustand wird im Statuswort angezeigt. Während des Betriebs unterscheidet der Servoregler zwischen:

- Dem Stillstand.
- Dem Betrieb.
- Den Fehlerzuständen.

10.1.3 Schema DRIVE COM Zustandsmaschine

Bild 10.3 Schema Zustandsmaschine

0 bis 8	Zustandsbezeichnungen
1 bis 16	Zustandsübergänge

Nr.	Zustandsbezeichnungen	Gerätezustand
0	Start	Initialisierung bei Geräteanlauf
1	Not ready to switch on (Nicht einschaltbereit)	 Am Servoregler liegt Steuerspannung (24 V) an. Der Servoregler ist initialisiert oder Selbsttest läuft. Falls vorhanden, wirkt die Bremse. Antriebsfunktion inaktiv.
2	Switch on disabled (Einschaltsperre)	 Initialisierung des Servoreglers ist abgeschlossen. Parameter des Servoreglers eingerichtet und änderbar. Zwischenkreis ist Spannungsfrei (230 V, z.B. zur Sicherheit). Antriebsfunktion ist deaktiviert. STO (Safe torque off) und ENPO (Enable power) inaktiv.
3	Ready to switch on (Einschaltbereit)	 Zwischenkreis steht unter Spannung. Parameter des Servoreglers können geändert werden. Antriebsfunktion ist deaktiviert.
4	Switched on (Eingeschaltet)	 Zwischenkreis steht unter Spannung. Parameter des Servoreglers können geändert werden. Power amplifier ist betriebsbereit. Antriebsfunktion ist deaktiviert.
5	Operation enabled (Betriebsbereit)	 Servoregler hat keine Fehler festgestellt. Antriebsfunktion aktiv und Stromversorgung an Motor angelegt. Parameter des Servoreglers können geändert werden. (Bezieht sich auf Standardanwendung des Servoreglers)
6	Quick stop active (Schnellhalt aktiv)	 Parameter des Servoreglers können geändert werden. Reaktion gemäß Quickstop Option code wird ausgeführt. Antriebsfunktion aktiv und Stromversorgung an Motor angelegt. Ist im Status "Quick stop activ" der "Quick stop option code" auf "5" gesetzt, mit dem Befehl "Enable operation" zum Status "Operation enable" wechseln.
7	Fault reaction active (Fehlereaktion aktiv)	 Parameter des Servoreglers können geändert werden. Fehlervorfall im Servoregler. Die Fehlerreaktion gemäß fault reaction code wird ausgeführt Antriebsfunktion aktiv und Stromversorgung an Motor angelegt.
8	Fault (Fehler)	 Parameter des Servoreglers können geändert werden. Fehlervorfall im Servoregler. Spannungsfreischaltung ist von der Applikation abhängig. Antriebsfunktion ist deaktiviert.

Nähere Informationen zur Anzeige des Gerätezustands des Servoreglers finden Sie im Kap. 4.7 und im Kap. 5.6.

Nr.	Zustandsübergänge	Beschreibung
0	Start>	Vorgang: Reset.
Ŭ	(Nicht einschaltbereit)	Aktion: Initialisierung bei Geräteanlauf und/oder Selbsttest.
1	Not ready to switch on> (Nicht einschaltbereit)	Vorgang: Der Servoregler hat sich selbst getestet und/oder initialisiert.
	Switch on disabled (Einschaltsperre)	Aktion: Kommunikation aktivieren.
2	Switch on disabled> (Einschaltsperre)	Vorgang: Befehl "Shutdown" vom Host empfangen.
2	Ready to switch on (Einschaltbereit)	Aktion: Keine.
2	Ready to switch on> (Einschaltbereit)	Vorgang: Befehl "Switch on" vom Host empfangen.
3	Switched on (Eingeschaltet)	Aktion: Der Leistungsteil wird eingeschaltet.
	Switched on> (Eingeschaltet)	Vorgang: Befehl "Enable operation" vom Host empfangen.
4 Operation enabled (Betriebsbereit)		Aktion: Antriebsfunktion ist aktiv.
5	Operation enabled> (Betriebsbereit)	Vorgang: Befehl "Disable operation" vom Host empfangen.
5 (Betriebsbereit) Switched on (Eingeschaltet)		Aktion: Antriebsbetrieb wird deaktiviert.
6	Switched on> (Eingeschaltet)	Vorgang: Befehl "Shutdown" vom Host empfangen.
0	Ready to switch on (Einschaltbereit)	Aktion: Der Leistungsteil ist ausgeschaltet.
-	Ready to switch> (Einschaltbereit)	Vorgang: Befehl "Quick stop" und "Disable voltage" vom Host empfangen.
ĺ	Switch on disabled (Einschaltsperre)o	Aktion: Keine.
	Operation enabled> (Betriebsbereit)	Vorgang: Befehl "Shutdown" vom Host empfangen.
8	Ready to switch on Ready to switch on	Aktion: Der Leistungsteil ist direkt abgeschaltet, der ungebremste Motor kann frei drehen.

62

Nr.	Zustandsübergänge	Beschreibung
	Operation enabled>	Vorgang: Befehl "Disable voltage" vom Host empfangen.
9	Switch on disabled (Einschaltsperre)	Aktion: Der Leistungsteil ist direkt abgeschaltet, der ungebremste Motor kann frei drehen.
	Switched on>	Vorgang: Befehl "Quick stop" oder "Disable voltage" vom Host empfangen.
10	Switch on disabled (Einschaltsperre)	Aktion: Der Leistungsteil ist direkt abgeschaltet, der ungebremste Motor kann frei drehen.
	Operation enabled> (betriebsbereit)	Vorgang: Befehl "Quick stop" vom Host empfangen.
	Quick stop active (Schnellhalt aktiv)	Aktion: "Quick stop" Funktion ist aktiv.
12	Quick stop active> (Schnellhalt aktiv) Switch on disabled	Vorgang: Befehl "Quick stop" ist beendet oder "Disable voltage" vom Host empfangen. Ist der "Quick stop option code" auf "5" gesetzt, tritt dieser Zustandsübergang ein (Stillstand im Zustand "Quick stop activ").
	(Einschaltsperre)	Aktion: Der Leistungsteil ist ausgeschaltet.
40	Alle Zustände>	Vorgang: "Fault" Fehlervorfall im Servoregler.
13	(Störungsreaktion aktiv)	Aktion: Entsprechende Fehlerreaktion ausführen.
	Fault reaction active>	Vorgang: Fehlerreaktion beendet.
14	Fault (Fehler)	Aktion: Der Servoregler ist deaktiviert. Der Leistungsteil ist evtl. ausgeschaltet.
	Fault>	Vorgang: Befehl "Fault reset" vom Host empfangen.
15	(Fehler) Switch on disabled (Einschaltsperre)	Aktion: Der Servoregler durchläuft den "Fault reset", bis der Fehler behoben ist. Ist der Zustand "Fault" verlassen, löscht der Host das Bit "Fault Reset".
16	Quick stop active> Operation enable	Vorgang: Befehl "Enable operation" vom Host empfangen. Dieser Zustandsüber- gang funktioniert, wenn der "Quick stop option code" auf 5, 6, 7 oder 8 gestellt ist (Siehe Kapitel 10.2.
		Aktion: Die Antriebsfunktion ist aktiv.

10.1.4 Bitkombinationen der Zustandsmaschine im Statuswort 6041h

Nr	Corötozuctord	Statuswort 6041h						
INI.	Geralezusland	6	5	4	3	2	1	0
1	Not ready to switch on (Nicht einschaltbereit)	0	4	Х	0	0	0	0
2	Switch on disabled (Einschaltsperre)	1	4	Х	0	0	0	0
3	Ready to switch on (Einschaltbereit)	0	1	Х	0	0	0	1
4	Switched on (Eingeschaltet)	0	1	Х	0	0	1	1
5	Operation enable (Betriebsbereit)	0	1	Х	0	1	1	1
6	Quick stop active (Schnellhalt aktiv)	0	0	Х	0	1	1	1
7	Fault reaction active (Fehlerreaktion aktiv)	0	4	Х	1	1	1	1
8	Fault (Fehler)	0	4	Х	1	0	0	0

Tabelle 10.1 Bitkombinationen der Gerätezustände

4 ... Bit ist irrelevant für diesen Zustand

10.1.5 Bitkombinationen der Steuerbefehle für die Zustandsübergänge - Steuerwort 6040h

Folgende Bitkombinationen (Bits des Steuerworts 0-3 und 7) bilden die Gerätesteuerbefehle für die Zustandsübergänge:

		Bits des S	Zustandsübergänge			
Geratesteuerbetehl des Zustands- übergangs	7 Fault reset	3 Enable operation	2 Quick- Stop	1 Enable voltage	0 Switch on	(siehe Abb. "Schema Zustandsmaschine" auf Seite 60)
Stillsetzen	0	Х	1	1	0	2, 6, 8
Einschalten	0	Х	1	1	1	3
Spannung sperren	0	Х	Х	0	1	7, 9, 10, 12
Schnellhalt	0	Х	0	1	Х	7, 10, 11
Betrieb sperren	0	0	1	1	1	5
Betrieb freigeben	0	1	1	1	1	4, 16
Reset Fehler	F	Х	Х	Х	х	15

Tabelle 10.2Bitkombinationen für Zustandsübergänge
X ... Bit ist irrelevant für diesen Zustand

10.2 Option codes

Für die nachstehenden Ereignisse stehen "Option codes" zur Konfiguration des Verhaltens zur Verfügung:

Objekt	Objektname / Unterstützte Einstellungen		Objekt Code	Тур	Zugriff
605Ah	Quick stop option code(Funktion Schnellhalt - Schnellhalt auslösen)0: Disable drive function1: Slow down on slow down ramp2: Slow down on quick stop ramp3: Slow down on the current limit4: Slow down on the voltage limit5: Slow down on slow down ramp and stay in Quick stop6: Slow down on quick stop ramp and stay in Quick stop7: Slow down on the current limit and stay in Quick stop8: Slow down on the voltage limit and stay in Quick stop	Quick stop	VAR	Int16	rw
0x605B	 Shutdown option code (Funktion Herunterfahren - Geführtes Auslaufen) -1: Reaktion gemäß Quick stop option code 0: Disable drive function 1: Slow down with slow down ramp; disable of the drive 	Shut- down	VAR	Int16	rw
605Ch	 Disable operation option code (Funktion Reglersperre - Freies Auslaufen) 0: Disable drive function 1: Slow down with slow down ramp and then disabling of the Drive function 	Disable operation	VAR	Int16	rw
605Dh	Halt option code(Funktion Halt - Stopp der laufenden Bewegung)0: Disable drive, motor is free to rotate1: Slow down on slow down ramp2: Slow down on quick stop ramp3: Slow down on the current limit4: Slow down on the voltage limit	Halt	VAR	Int16	rw

Tabelle 10.3 Option codes

Objekt	Objektname / Unterstützte Einstellungen	Ereignis	Objekt Code	Тур	Zugriff	
605Eh	 Fault reaction option code (Funktion Fehlerreaktion - Stopp im Fehlerfall) -2: EXT_TO: External reaction, disable drive at time out (P0154) -1: EXT_TO_ROTO: External reaction, disable drive at time out or motor standstill Disable drive, motor is free to rotate Slow down on slow down ramp Slow down on the current limit Slow down on the voltage limit 	Fault	VAR	Int16	rw	
P0154: MPR0_DRVCOM_ROT0_Time						

Tabelle 10.3 Option codes

Hinweis:

Die Schnellhaltrampe wird mit dem, für die Fahrprofilrampen eingestellten Verschliff durchgeführt. Die Fehlerstopprampe wird, auch bei programmiertem Verschliff, ohne Verschliff ausgeführt.

10.3 Einheiten und Normierung, Factor Group

Die PC-Benutzersoftware **Moog DriveAdministrator 5** besitzt einen Normierungsassistent.

Über den Normierungsassistent lassen sich:

- Benutzereinheiten konfigurieren.
- In ihrem Mechanischen und elektrischen Zusammenhang aufnehmen.
- In Form der Parameter der CiA402-Factor Group darstellen.

Hinweis:

Folgende Parameter berechnet der Servoregler intern:

- Position factor.
- Velocity encoder factor.
- Acceleration factor.

Grundlage für die Berechnung sind in den Formeln hinterlegte Parameter (z.B. Feed constant, Gear ratio). Es gibt 2 Arten um Anwendungsgrößen zu ändern:

- 1. Im Moog DriveAdministrator 5.
- 2. Über das Feldbussystem.

Hinweis:

Geänderte Normierungsparameter werden bei der nächsten Regelungsinitialisierung (Neustart des Servoreglers, Start Regelung) übernommen und die Normierung neu berechnet.

Hinweis:

Praxisbeispiele zur Normierung finden Sie in der "MSD Servo Drive – Geräte Hilfe".

10.3.1 Objekte der Factor Group gemäß CiA402:

Objekt	Objektname	Objekt Code	Тур	Zugriff
0x607E	Polarity	VAR	Unsigned8	rw
0x6089	Position notation index	VAR	Integer8	rw
0x608A	Position dimension index (Anzeige für Normierungsblock)	VAR	Unsigned8	rw
0x608B	Velocity notation index	VAR	Integer8	rw
0x608C	Velocity dimension index (Anzeige für Normierungsblock)	VAR	Unsigned8	rw
0x608D	Acceleration notation index	VAR	Integer8	rw
0x608E	Acceleration dimension index (Anzeige für Normierungsblock)	VAR	Unsigned8	rw
0x608F	Position encoder resolution	VAR	Unsigned8	rw
0x6090	Velocity encoder resolution	ARRAY	Unsigned32	rw
0x6091	Gear ratio	ARRAY	Unsigned32	rw

Tabelle 10.4 Objekte der Factor Group

Objekt	Objektname	Objekt Code	Тур	Zugriff
0x6092	Feed constant	ARRAY	Unsigned32	rw
0x6093	Position factor	ARRAY	Unsigned32	rw
0x6094	Velocity encoder factor	ARRAY	Unsigned32	rw
0x6097	Acceleration factor	ARRAY	Unsigned32	rw

Tabelle 10.4 Objekte der Factor Group

Der Anwender kann die Objekte der Factor Group unabhängig vom Normierungsassistenten des **Moog DriveAdministrators** berechnen und eintragen. Dazu die entsprechenden Drehgebereinstellungen vornehmen.

10.3.2 Berechnung der wichtigsten Factor Group Parameter

Objekt 608Fh: Position encoder resolution

Definiert das Verhältnis der Drehgeberinkremente zu den Motorumdrehungen.

Drehgeberinkremente Position encoder resolution = Motorumdrehungen

Objekt 6090h: Velocity encoder resolution

Definiert das Verhältnis der Drehgeberinkremente pro Sekunde zu den Motorumdrehungen pro Sekunde.

Inkremente Drehgeber Sekunde Velocity encoder resolution = Motor Umdrehungen

Sekunde

Objekt 6091h: Gear ratio

Definiert das Übersetzungsverhältnis eines Getriebes am Motor.

Objekt 6091h: Gear ratio

Umdrehungen der Motorwelle Gear ratio = Umdrehungen der Antriebswelle

Objekt 6092h: Feed constant

Definiert das Verhältnis des Vorschubs der Positionseinheiten zu den Umdrehungen der Antriebswelle (Getriebe berücksichtigen, sofern vorhanden).

> Vorschub feed constant = Umdrehungen der Antriebswelle

Objekt 6093h: Position factor

Wandelt die gewünschte Position (in Positionseinheiten) in das interne Format (in Inkrementen)

Position encoder resolution • Getriebefaktor Position factor = Vorschubkonstante

Objekt 6094h: Velocity encoder factor

Wandelt die gewünschte Geschwindigkeit (in Geschwindigkeitseinheiten) in das interne Format (in Inkrementen)

Velocity encoder factor =

Velocity encoder resolution • Getriebefaktor • Positionseinheit • F Geschwindigkeit (Notationsindex) Vorschubkonstante • Geschwindigkeitseinheit • Sekunde • F Positon (Notationsindex)

Ein Beispiel für F Geschwindigkeit (Notationsindex) Oder F Positon (Notationsindex) wäre 10² oder 10⁻⁶

Objekt 6097h: Acceleration factor

Wandelt die Beschleunigung (in Beschleunigungseinheiten/s) in das interne Format (in Inkrementen/s).

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 65

Objekt 6097h: Acceleration factor

Geschwindigkeitseinheit • Velocity encoder factor

Acceleration factor =

Beschleunigungseinheit · Sekunde

Objekt 607Eh: Polarity

Abhängig vom Wert des Polarity flags mit 1 oder -1 multiplizieren:

- · Positions-Istwert und -Sollwert.
- · Geschwindigkeit-Istwert und -Sollwert.

Bedienung des Parameters Polarity gemäß CiA402 V2.0 beachten!

Bits 0 bis 5 = Reserviert (don't use) Bit 6 = Velocity polarity Bit 7 = Position polarity

HINWEIS:

Änderungen an den Parametern der Factor Group:

- Bei deaktivierter Endstufe vornehmen!
- Durch Neustart des Servoreglers (Regelungsinitialisierung) aktivieren!

10.4 F/A-Abbild

Die folgenden Objekte des Servoreglers zeigen den Status der Ein- und Ausgänge und sind implementiert.

Objekt 60FDh – Digitale Eingänge 10.4.1

Das Objekt 60FDh:

- ist konform dem Geräteprofil CiA402 implementiert.
- ermöglicht im Geräteprofil definierte Funktionen der digitalen Eingänge . auszuwerten.
- zeigt ein funktionsbezogenes Eingangsabbild und kein Abbild der . vorhandenen physikalischen Eingänge. Damit ist es gleich, an welchem Eingang zum Beispiel ein Endschalter angebunden ist. Innerhalb des Objekts ist das Bit definiert, das den Zustand des Endschalters beschreibt.

Bit	Belegung		
0	negativer Begrenzungsschalter		
1	sitiver Begrenzungsschalter		
2	Referenzschalter		
18	Status Anforderung – Sicherer Halt		
19	ENPO (Enable power)		

Tabelle 10.5 Objekt 60FDh – Digitale Eingänge

10.4.2 Objekt 2079h – MPRO_INPUT_STATE

Das Objekt 2079h:

- Ist herstellerspezifisch.
- Liefert ein Eingangsabbild der digitalen Eingänge des Servoreglers.
- ist prozessdaten fähig

Bit	Belegung		
0	Zustand Eingang ENPO (Enable power)		
1	Zustand Eingang ISD00		
2	Zustand Eingang ISD01		
3	Zustand Eingang ISD02		
4	Zustand Eingang ISD03		
5	Zustand Eingang ISD04		
6	Zustand Eingang ISD05		
7	Zustand Eingang ISDSH		
8 bis 15	Nicht belegt		
16	Zustand Eingang ISD06		
17	Nicht belegt		
18	Zustand Eingang ISA00		
19	Zustand Eingang ISA01		
30 bis 31	Nicht belegt		

Tabelle 10.6 Objekt 2079h – MPRO_INPUT_STATE

10.4.3 Objekt 208Fh - MPRO_OUTPUT_STATE

Das Objekt 208Fh:

- Ist herstellerspezifisch.
- Liefert ein Ausgangsabbild der digitalen Ausgänge des Servoreglers.
- ist prozessdaten fähig

Bit	Belegung
0	Zustand Ausgang OSD00
1	Zustand Ausgang OSD01
2	Zustand Ausgang OSD02
3 bis 5	Nicht belegt
6	Zustand Ausgang Motorbremse
7	Zustand Relais-Ausgang
8 bis 14	Nicht belegt
15	Zustand Relais-Ausgang "STO (Safe Torque Off)"

Tabelle 10.7 Objekt 208Fh – MPRO_OUTPUT_STATE

10.4.4 Digitale Ausgänge über Feldbus setzen

Die 3 digitalen Ausgänge (OSD00, OSD01, OSD02 plus RELOUT1) für den Zugriff über Feldbus vorbereiten:

• Ausgangsselektoren "MPRO_Output_FS_xxx" (Parameter P0122 - P0124, P0126) konfigurieren:

Einstellung	Beschreibung
(39) Output set via communication option in 1 ms cycle	Setzen des Ausgangs über Kommunikationsoption, Aktualisierung im 1ms Zyklus
(40) Output set via communication option in NC cycle	Setzen des Ausgangs über Kommunikationsoption, Aktualisierung im Regelungszyklus (62,5 µs)

 Tabelle 10.8
 Parameter Einstellung des Objekts - MPRO_Output_FS_OSDxx (P0122 - P0124, P0126)

10.4.5 Objekt 60FE - Digitale Ausgänge

Über das herstellerspezifische Objekt 60FE (Funktionsselektor für digitale Ausgänge

= **COM_NC (39) oder COM_NC (40)**) die Ausgänge setzen:

Bit	Belegung
16	OSD00
17	OSD01
18	OSD02
23	RELOUT1
22	Motorbremse (OSD03)

Tabelle 10.9 Objekt 60FE - Digitale Ausgänge

11 Betrieb des MSD Servo Drive Servoreglers über CiA402

11.1 Parametrierung

Für die Ansteuerung über die Feldbussysteme CANopen und EtherCAT (gemäß CiA402 Geräteprofil) folgende Parameter einstellen:

Parameter-Nr.	Name	Funktion	Einstellung
P 0159	MPRO_CTRL_SEL	Steuerortselektor	CiA402
P 0165	MPR0_REF_SEL	Sollwertselektor	CiA402

Tabelle 11.1Parametrierung des MSD Servo Drive

Diese Parameter finden Sie unter "Grundeinstellungen"in der Maske "Bewegungsprofil".

11.2 Interpolieren der Sollwerte

In der Zykluszeit erwartet der Servoregler im Parameter **CON_IpRefTs** Sollwerte von einer übergeordneten Steuerung.

Gleichen Sie die Zykluszeit des Servoreglers an (interpolieren), wenn bei der angesteuerten Betriebsart:

- der interne Profilgenerator inaktiv ist und
- Sollwerte zyklisch übertragen werden.

Dies ist z.B. im Cyclic synchronous position mode der Fall.

Zykluszeit im Geräteparameter P 0306[0] abgleichen:

Parameter-Nr.	Name	Funktion			
P 0306	CON_lpRefTs	Zykluszeit der Sollwerte im IP Mode (Interpolationsmodus)			

Tabelle 11.2Parametrierung des MSD Servo Drive

11.3 Steuerwort

11.3.1 Objekt 6040h-Steuerwort

Das Objekt 6040h-Steuerwort ist im Parameter **P 2208[0] MPRO_402_Controlword** abgebildet. Das Steuerwort beinhaltet Bits für die:

- Zustandssteuerung.
- Steuerung der Betriebsarten.
- Herstellerspezifischen Optionen.

Die Bits des Steuerworts sind wie folgt definiert:

Bit	Beschreibung	М/О	Bitwertigkeit
0	Switch on (einschalten)	М	LSB
1	Enable voltage (Spannung einschalten)	М	
2	Quick stop (Schnellhalt)	Μ	
3	Enable operation (Betrieb einschalten)	Μ	
4	Operation mode specific	0	
6	(betriebsartspezifisch)	0	
7	Fault reset (Fehler Reset)	М	
8	Halt	0	
9	reserved	0	
10	(reserviert)	U	
11	Manufacturer specific	0	MCR
15	(herstellerspezifisch)	0	IVIOD

Tabelle 11.3 Bits im Seuerwort, O ... Optional, M ... Mandatory

Bits 0 - 3 und 7:

DEVICE CONTROL COMMANDS durch folgendes Schema im Steuerwort triggern:

	Bits des Steuerworts					
Befehl	Bit 7 Fault reset	Bit 3 Enable operation	Bit 2 Quick- Stop	Bit 1 Enable voltage	Bit 0 Switch on	Übergänge
Shutdown (abschalten)	0	Х	1	1	0	2, 6, 8
Switch on (einschalten)	0	0	1	1	1	3*
Switch on (einschalten)	0	1	1	1	1	3**
Disable voltage (Spannung aus- schalten)	0	Х	Х	0	Х	7, 9, 10, 12
Quick stop (Schnellhalt)	0	Х	0	1	Х	7, 10, 11
Disable operation Betrieb ausschalten)	0	0	1	1	1	5
Enable operation (Betrieb einschalten)	0	1	1	1	1	4, 16
Fault reset (Fehler Reset)	ſ	Х	Х	Х	Х	15

HINWEIS: Die Bits im Steuerwort nacheinander setzen!

Mit X markierte Bits sind irrelevant

* ... Im Status "SWITCH ON" führt der Antrieb die Funktion des Status aus.

** ... Im Status "SWITCH ON" führt der Antrieb die Funktion des Status nicht aus.

Tabelle 11.4 Gerätesteuerbefehle

Bits 4 - 6 und 8

Die Bits 4 - 6 und 8 haben je nach aktiver Betriebsart ("Modes of operation display") unterschiedliche Funktionen:

Ratriaheart	Bit				
Detriebsart	4	5	6	8	
Profile position mode	New setpoint	Change set immediately	absolute/ relative	halt	
Profile velocity mode	reserved	reserved	reserved	halt	
Homing mode	Homing operation start	reserved	reserved	halt	
Interpolated position mode	Enable IP mode	reserved	reserved	halt	
Cyclic Synchronous Position Mode	reserved	reserved	reserved	reserved	
Cyclic Synchronous Velocity Mode	reserved	reserved	reserved	reserved	
Cyclic Synchronous Torque Mode	reserved	reserved	reserved	reserved	

Tabelle 11.5 Betriebsartspezifische Bits im Steuerwort

Bits 7 und 11 - 15

Bit	Name	Wert	Beschreibung
7	Fehler löschen	0 ⇔ 1	Fehler löschen
11			keine Funktion
	keine Funktion		keine Funktion
15			keine Funktion

Tabelle 11.6Betriebsartspezifische Bits im Steuerwort

11.3.2 Statuswort

Objekt 6041h-Statuswort

Das Objekt 6041h-Statuswort ist im Parameter **P 2209[0] MPRO_402_Statusword** abgebildet. Das Statuswort zeigt den aktuellen Status des Servoreglers. Es beinhaltet die Bits für:

- Den aktuellen Gerätezustand.
- Den Zustand der Betriebsart.
- Die Zustände der herstellerspezifischen Funktionen.

Bits im Statuswort

Bit	Beschreibung	M/0
0	Ready to switch on (Einschaltbereit)	М
1	Switched on (Eingeschaltet)	М
2	Operation enabled (Betriebsbereit)	М
3	Fault (Fehler)	М
4	Voltage enabled (Spannung eingeschaltet)	М
5	Quick stop (Schnellhalt)	М
6	Switch on disabled (Einschaltsperre)	М
7	Warning (Warnung)	0
8	Manufacturer specific (herstellerspezifisch)	0
9	Remote (fern)	М
10	Target reached (Ziel erreicht)	М

Tabelle 11.7 Bits im Statuswort, O ... Optional, M ... Mandatory

Bit	Beschreibung	М/О
11	Internal limit active (Grenzwerte aktiv)	М
12 - 13	Operation mode specific (betriebsartspezifisch)	0
14 - 15	Manufacturer specific (herstellerspezifisch)	0

Tabelle 11.7 Bits im Statuswort, O ... Optional, M ... Mandatory

Bits 0 - 3, 5 und 6:

Die Bits 0 - 3, 5 und 6 zeigen den STATUS des Servoreglers.

Wert (binär)	Status
xxxx xxxx x0xx 0000	Not ready to switch on (betriebsbereit)
xxxx xxxx x1x1 0000	Switch on disabled (nicht betriebsbereit)
xxxx xxxx x011 0001	Ready to switch on (bereit zum Einschalten)
xxxx xxxx x011 0011	Switched on (eingeschaltet)
xxxx xxxx x011 0111	Operation enabled (betriebsbereit)
xxxx xxxx x001 0111	Quick stop active (Schnellhalt aktiv)
xxxx xxxx x0xx 1111	Fault reaction active (Fehlerreaktion aktiv)
xxxx xxxx x0xx 1000	Fault (Fehler)

Tabelle 11.8 Bits für den Gerätezustand "Statuswort"

Bit 4: Voltage enabled

Leistungsversorgung liegt an.

Bit 5: Quick Stop

Bit 5 zeigt im Zustand LOW, dass der Antrieb ein "Schnellhalt" ausführt. Ist der Antrieb betriebsbereit, sind die Bits 0, 1 und 2 des "Statuswort" auf 1 gesetzt. Die anderen Bits zeigen Zustände des Antriebs, z.B. "Schnellhalt" ausführen.

Im Fehlerfall wird das Bit FAULT gesetzt (1).

Bit 7: Warning

Bit 7 zeigt Warnungen, z. B. Temperaturgrenzen. Bei Warnungen ändert sich der Gerätezustand nicht. Nähere Informationen zur anstehenden Warnung entnehmen Sie dem Fehlercode. Die Definition der Warnungen/Warnungslevels sind im Moog DRIVEADMINISTRATOR 5 in folgenden Parametern einstellbar:

- P 034[0] = aktuelles Statuswort Gerätewarnung
- **P 033[0-8]** = aktueller Fehler/aktuelle Warnung = Meldung im MDA5

Bit 8: Herstellerspezifisch

z. Zt. nicht belegt.

Bit 9: Remote

Bit 9 zeigt, dass der Steuerortselektor (Parameter **P 0159 MPRO_CTRL_SEL**) auf CiA402 CANopen/EtherCAT (CiA402(5)) parametriert ist und das Steuerwort (Objekt 6040h) verarbeitet wird.

Bit 10: Target reached

Bit 10 ist automatisch gesetzt:

 wenn ein Sollwert (SETPOINT) erreicht ist. Der Sollwert ist von der Betriebsart abhängig. Änderungen des Sollwerts durch den Master ändert Bit 10.

- bei "Quick stop" (OPTION CODE 5, 6, 7 oder 8) nach Beendigung des "Schnellhalt".
- bei HALT-Anforderung im Stillstand.

Bit 11: Internal limit active

Bit 11 ist:

- gesetzt, wenn interne Begrenzungen erreicht sind.
- von der Betriebsart abhängig.

Bit 12 und 13:

Bit 12 und 13 sind von der Betriebsart abhängig (siehe folgende Kapitel "Betriebsarten CiA402").

Überblick:

Ratriaheart	Bit			
Detilebsait	12	13		
Profile position mode	Setpoint acknowledge	Following error		
Profile velocity mode	Speed	Max slippage error		
Homing mode	Homing attained	Homing error		
Interpolated position mode	IP mode active	reserved		
Cyclic Synchronous Position Mode	Target position ignored	Following error		
Cyclic Synchronous Velocity Mode	Target velocity ignored	reserved		
Cyclic Synchronous Torque Mode	Target torque ignored	reserved		

Tabelle 11.9 Betriebsartspezifische Bits im Steuerwort

Bit 14 und 15:

Bit 14 und 15 sind herstellerspezifisch. Erklärungen finden Sie bei der jeweiligen Betriebsart im Kapitel "Betriebsarten CiA402".

72
12 Betriebsarten

12.1 CiA402 kompatible Betriebsarten

Die Betriebsartenumschaltung eines Servoreglers erfolgt über das Objekt 0x6060 Modes of operation und kann im Zustand "Operation enable" (Motor bestromt) durchgeführt.

Das Objekt 6061 h Modes of operation display zeigt die aktuelle Betriebsart.

Folgende Betriebsarten sind im CiA402 Geräteprofil hinterlegt:

Nr.	Betriebsarten mit Profilgenerierung im Servoregler		
1	Profile position mode	Seite 73	
2	Velocity mode (U/F Betrieb)	Seite 76	
3	Profile velocity mode	Seite 77	
4	Reserviert	-	
5	Reserviert	-	
6	Homing mode	Seite 78	

Tabelle 12.1 Betriebsarten mit Profilgenerierung im Servoregler

Nr.	Betriebsarten mit Profilgenerierung in der Steuerung			
7	Interpolated position mode Seite 8			
Herstellerspe	Herstellerspezifische Betriebsarten (nicht in der CiA402 definiert):			
8	Cyclic synchronous position mode (nur EtherCAT)	Seite 81		
9	Cyclic synchronous velocity mode (nur EtherCAT)	Seite 82		
10	Cyclic synchronous torque mode (nur EtherCAT)	Seite 83		

Tabelle 12.2Betriebsarten mit Profilgenerierung in der Steuerung

12.2 Betriebsarten mit Profilgenerierung im Servoregler

Bei den Betriebsarten mit einer Profilgenerierung im Servoregler wird die Bahnkurve (Trajektorie) anhand der vorgegebenen Zielposition/Zielgeschwindigkeit intern berechnet. Die externe Steuerung wirkt auf das Steuerwort und die Zielwerte.

Die Profilparameter im Antrieb beschreiben, wie:

- der Servoregler diese Position / Geschwindigkeit erreicht.
- das Fahrprofil (z. B. Trapez, Dreieck / Steilheit der Rampen etc.) aussieht.

Der Antrieb generiert das entsprechende Profil.

12.2.1 1 Profile position mode

Funktionsbeschreibung

Die Betriebsart "Profile position mode" unterstützt zwei Arten der Zielpositionsvorgaben:

- Set of setpoints
- Single setpoint

Set of setpoints:

Ist die Sollposition erreicht, fährt der Antrieb direkt zur nächsten übertragenen Zielposition.

Single setpoint:

Erreicht der Antrieb die Zielposition:

- signalisiert dies der Master
- der Antrieb erhält einen neuen Sollwert
- der Antrieb stoppt bei jeder Zielposition, bevor er zur nächsten Zielposition fährt.

Das Timing folgender Bits steuert die Zielpositionsvorgabe:

- New setpoint im Steuerwort
- Change set immediately im Steuerwort
- Setpoint acknowledge im Statuswort

12 Betriebsarten

MOOG Id.-Nr.: CA65647-002 Stand: 03/2020

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 74

Diese Bits bewirken eine nachfolgende Positionierung während einer laufenden Positionierung.

In der Betriebsart "Profile position mode" (Modes of operation = 1)

- vollzieht die Achse relative oder absolute Positionierbewegungen.
- ist der Antrieb in Positionsregelung.

Objekt Nr.	Objekt Name	Objekt Code	Тур	Attr.
0x607A	Target position	VAR	Integer32	rw
0x607d	Software position limit	ARRAY	Integer32	rw
0x6081	Profile velocity	VAR	Unsigned32	rw
0x6083	Profile acceleration	VAR	Unsigned32	rw
0x6084	Profile deceleration	VAR	Unsigned32	rw
0x6085	Quick stop deceleration	VAR	Unsigned32	rw
0x6064	Position actual value	VAR	Integer32	r
0x607E	Polarity	VAR	Unsigned8	rw

Tabelle 12.3 Unterstützte Objekte im "Profile position mode"

Einstellen der Normierung über:

- den Normierungsassistenten oder
- die Objekte aus der Factor Group.

Bild 12.1 Struktur Profile position mode

Struktur der Betriebsart

Betriebsartspezifische Bits im Steuerwort

Bit	Name	Wert	Beschreibung
4	Now actaciat	0	Zielposition nicht übernommen
4	New Setpoint	1	Zielposition übernommen
5	Change est immediately	0	Aktuelle Positionierung beenden und nächste Positionierung starten
5 Change set immed	Change set inimediately	1	Aktuelle Positionierung unterbrechen und nächste Positionierung starten
6	abaalut (valativ	0	Zielposition ist ein absoluter Wert
o di	absolut / Telativ	1	Zielposition ist ein relativer Wert
8	Halt	0	Positionierung ausführen
		1	Achse mit dem Profil Verzögerung stoppen (wenn Profil Beschleunigung nicht aktiv)

Tabelle 12.4 PROFILE POSITION MODE Bits im Steuerwort

Betriebsartspezifische Bits im Statuswort

Bit	Name	Wert	Beschreibung
10	Target reached	0	Halt = 0: Zielposition nicht erreicht Halt = 1: Achse bremst
10		1	Halt = 0: Zielposition erreicht Halt = 1: Geschwindigkeit der Achse ist 0
10		0	Trajektoriengenerierung hat die Positionswerte nicht übernommen
12 Setp	Selpoint acknowledge	1	Trajektoriengenerierung hat die Positionswerte übernommen
10	Following orror	0	Kein Schleppfehler
13	Following error	1	Schleppfehler
14	ROT_0	1	Achse im Stillstand, Geschwindigkeit ist kleiner als Parameter P0745 MON_REFWINDOW

Tabelle 12.5 PROFILE POSITION MODE Bits im Statuswort

Sollwertübertragung von einem Master (Host Computer)

Bild 12.2 Sollwertübertragung von einem Master

- (1) Ist das Bit 5 "Change Set Immediately" gleich "O" (durchgezogene Linie im Bild oben) erwartet der Antrieb einen "Single setpoint".
- (2) Ist der Sollwert zum Antrieb übertragen, aktiviert der Master die Positionierung durch Setzen des Bits 4 "New Setpoint" im Steuerwort.
- (3) Wurden die neuen Daten erkannt und gespeichert, setzt der Antrieb das Bit 12 "Setpoint Acknowledge" im Statuswort.
- (4) Der Master löscht das Bit 4 "New Setpoint".
- (5) Durch Löschen des Bits 12 "Setpoint Acknowledge" übergibt der Antrieb einen neuen Sollwert.

Ist die Zielposition bei Zeit t₁ erreicht:

- ist die Geschwindigkeit auf 0.
- wird die nächste Zielposition bei Zeit t₂ ausgelöst.
- (6) Ist das Bit 5 "Change Set Immediately" auf "1" gesetzt (gestrichelte Linie im Bild 12.2) wird die neue Zielposition übernommen.

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 76

12.2.2 2 Velocity mode (U/F Betrieb)

Die Betriebsart Velocity Mode (Modes of operation = 2) steuert den Antrieb im frequenzgesteuerten Betrieb (U/f Betrieb).

Die Einheiten, der Sollwert und die Rampengrößen ergeben sich aus den Einstellungen der Factor Group. Siehe dazu auch Kapitel "10.3 Einheiten und Normierung, Factor Group" auf Seite 64.

Das Gerät unterstützt folgende Objekte in der Betriebsart "Velocity Mode":

Objekt Nr.	Objekt Name	Objekt Code	Тур
0x6042	vl Target velocity	VAR	Integer16
0x6046	vl Min Max amount	ARRAY	Unsigned32
0x6048	vl Velocity acceleration	ARRAY	Unsigned32
0x6049	vl Velocity deceleration	ARRAY	Unsigned32

Tabelle 12.6 Velocity mode

Objekt Nr.	Objekt Name	Beschreibung	
0x6046	vl Min Max amount	Index	
		0	Min. Geschwindigkeit in Anwendereinheit
		1	Max. Geschwindigkeit in Anwendereinheit
0x6048	vl Velocity acceleration	Index	
		0	Geschwindigkeitsänderung in Anwendereinheit
		1	pro Zeiteinheit
0x6049	vl Velocity deceleration	Indov	
		Index	
		0	Geschwindigkeitsänderung in Anwendereinheit
		1	pro Zeiteinheit

Tabelle 12.7 Begrenzungen im U/f Betrieb

Betriebsartspezifische Bits im Steuerwort

Bit	Name	Wert	Beschreibung
5	Unlock ramp	0	Rampenfunktionsgeneratorausgangswert auf aktuellen Wert fixieren
0		1	Rampenfunktionsgeneratorausgangswert folgt dem Rampenfunktionsgeneratoreingangswert
6	Reference ramp	0	Rampenfunktionsgeneratoreingangswert auf NULL setzen
		1	Rampenfunktionsgeneratoreingangswert entspricht Sollwert
8	Halt	0	Kein Kommando
		1	Achse stoppen

Tabelle 12.8 PROFILE VELOCITY MODE (U/F-BETRIEB) Bits im Steuerwort

12.2.3 3 Profile velocity mode

In der Betriebsart "Profile velocity mode" (Modes of operation = 3):

- wird das Gerät mit einem Geschwindigkeits-Sollwert gemäß CiA402-Geräteprofil angesteuert.
- ist der Antrieb in Geschwindigkeitsregelung.

Die Einheiten, der Sollwert und die Rampengrößen ergeben sich aus den Einstellungen der Factor Group (siehe Kapitel "10.3 Einheiten und Normierung, Factor Group" auf Seite 64).

Relevante Objekte für diese Betriebsart "Profile velocity mode":

Objekt Nr.	Objekt Name	Objekt Code	Тур
0x606C	Velocity actual value	VAR	Int32
0x60FF	Target velocity	VAR	Int32
0x6094	Velocity encoder factor	ARRAY	Int32
0x6083	Profile acceleration	VAR	Int32
0x6084	Profile deceleration	VAR	Int32
0x6085	Quick stop deceleration	VAR	UInt32
0x607E	Polarity	VAR	UInt8
0x607F	Max. profile velocity	VAR	UInt32

Tabelle 12.9 Profile velocity mode

Hinweis: Der "Profil • die in d

Der "Profile velocity mode" aktualisiert zyklisch:

- die in der Tabelle aufgeführten Objekte.
- das Objekt 0x6064 "Position actual value".

Betriebsartspezifische Bits im Steuerwort

Bit	Name	Wert	Beschreibung
		0	Bewegung ausführen
8	Halt	1	Stop Achse

Tabelle 12.10 PROFILE VELOCITY MODE Bits im Steuerwort

Betriebsartspezifische Bits im Statuswort

Bit	Name	Wert	Beschreibung
10	Target reached	0	Halt = 0: Ziel-Geschwindigkeit (noch) nicht erreicht) Halt = 1: Achse verlangsamt
		1	Halt = 0: Ziel-Geschwindigkeit erreicht Halt = 1: Achse hat Geschwindigkeit 0
12	Speed	0	Geschwindigkeit ist nicht 0
		1	Geschwindigkeit ist 0
13	Maximum slippage error	0	Maximale Verzögerung nicht erreicht
		1	Maximale Verzögerung erreicht

 Tabelle 12.11
 PROFILE VELOCITY MODE Bits iim Statuswort

Betriebsarten

Struktur der Betriebsart

Bild 12.3 Struktur Profile velocity mode

12.2.4 Homing mode

Die Betriebsart "Homing mode" (Modes of operation = 6) referenziert eine lagegeregelte Achse. Der programmierte Referenzfahrttyp (homing method object 0x6098) bestimmt die Bewegung des Antriebs.

Hinweis:

Steuerungsgeführte Referenzierung des Antriebs durch die Touch Probe Funktion. Siehe Kapitel "14.1 Touch Probe" auf Seite 87.

Die Referenzfahrttypen unterscheiden sich in der Einbeziehung von Hardwareendschalter, Referenzmarken und Nullimpuls des Gebersystems.

Beachten:

Bei folgenden Endschalter- und Referenzmarkenfunktionalitäten entsprechende digitale Eingänge parametrieren:

- Endschalterfunktion
- LCW rechter HW-Endschalter
- LCCW linker HW-Endschalter
- HOMSW Referenzmarke

P 100[0] bis **P 112[0]** = Funktionsbelegung der Digitalen Eingänge

Relevante Objekte für die Betriebsart "Homing mode":

Objekt Nr.	Objekt Name	Objekt Code	Тур	Attr.	
0x607C	HomeOffset	VAR	Integer32	rw	
0x6098	HomingMethod	VAR	Integer8	rw	
0x6099	HomingSpeeds *	ARRAY	Unsigned32	rw	
0x609A	HomingAcc	VAR	Unsigned32	rw	
* 0x6099.01 - Eilganggeschwindigkeit 0x6099.02 - Schleichganggeschwindigkeit					

Tabelle 12.12 Objekte für die Betriebsart "Homing mode"

Der Antrieb unterstützt alle 35 in der CiA402 definierten Referenzfahrt Methoden (HOMING METHODS).

Die Funktionen und Bewegungsabläufe der Referenzfahrttypen finden Sie in der Online-Hilfe des Servoreglers.

Home offset

Das Objekt "Home Offset" ist die Differenz zwischen Position 0 der Applikation und der während der Referenzierung gefundenen "Home Position". Die Differenz wird in Positionseinheiten dargestellt.

Nach der Referenzierung ergibt die Summe aus "Home Offset" und "Home Position" die neue Nullposition.

Alle folgenden absoluten Positionierungen beziehen sich auf diese neue Nullposition.

Der Referenzfahrttyp und dessen Eigenschaften lassen sich auf 2 Arten umstellen:

- 1. Über den Moog DriveAdministrator 5.
- 2. Über Feldbussystem CANopen.

Die Parametrierung via CANopen regeln die Objekte des "Homing mode". Beispiel: Änderungen am Objekt 0x6098, ändern den Referenzfahrttyp.

HINWEIS:

Nähere Informationen entnehmen Sie bitte der MSD Servo Drive – Geräte Hilfe (verfügbar im Download-Bereich auf www.moogsoftwaredownload.com/msd.html).

Betriebsartspezifische Bits im Steuerwort

Bit	Name	Wert	Beschreibung
4	Homing operation start	0	Referenzfahrt inaktiv
		0 ⇔ 1	Start Referenzfahrt
		1 ⇔ 0	Referenzfahrt unterbrochen
0	Halt	0	Anweisung des Bit 4 ausführen
0		1	Stoppt Achse mit Verzögerung

Tabelle 12.13 HOMING MODE Bits im Steuerwort

Betriebsartspezifische Bits im Statuswort

Bit	Name	Wert	Beschreibung
10	Target reached	0	Halt = 0: Grundposition nicht erreicht Halt = 1: Achse bremst
10		1	Halt = 0: Grundposition erreicht Halt = 1: Achse in Geschwindigkeit 0
10	10 Harring attained		Referenzfahrt nicht ausgeführt
12	norning attained	1	Referenzfahrt erfolgreich ausgeführt
	Homing error	0	Kein Referenzfahrtfehler
13		1	Referenzfahrtfehler. Referenzfahrt misslungen. Fehlercode (siehe Onlinehilfe) zeigt die Fehler- ursache.
14	ROT_0	1	Achse im Stillstand. Geschwindigkeit viel kleiner als Parameter P0745 MON_REFWINDOW

Tabelle 12.14 HOMING MODE Bits im Statuswort

12.3 Zyklische Betriebsarten, Profilgenerierung in der Steuerung

In den zyklischen Betriebsarten:

- Übernimmt die Steuerung die Profilgenerierung.
- Ist der interne Profilgenerator des Antriebs nicht aktiv.
- Interpoliert der Antrieb die zyklisch übertragenen Sollwerte der Steuerung je nach Betriebsart (Position, Geschwindigkeit, Drehmoment).

12.3.1 7 Interpolated position mode

Die Betriebsart "Interpolated position mode" (Modes of operation = 7):

- Dient der Positionierung von Achsen über CANopen.
- Bewegt eine oder mehrere Achsen, koordiniert durch eine Steuerung.

Die Steuerung:

- Erstellt im "Interpolated position mode" das Fahrprofil ohne Profilgenerator.
- Übergibt zyklisch Positionswerte.
- Der Servoregler übernimmt die "Feininterpolation" (z.B. lineare Interpolation).

Die Veränderungen der Sollpositionen pro Zeiteinheit bestimmen das Profil, dem die Achse folgt.

Das Gerät unterstützt folgende Objekte in der Betriebsart "Interpolated position mode":

Objekt Nr.	Objekt Name	Objekt Code	Тур
0x60C0	Interpolation sub mode select	VAR	Integer16
0x60C1	Interpolation data record	ARRAY	Integer32
0x60C2	Interpolation time period	RECORD	Index0: Unsigned8 Index1: Integer8

Tabelle 12.15 Unterstützte Objekte im "Interpolated position mode"

Das Objekt 0x60C0 "Interpolation sub mode select" unterstützt folgende Einstellungen:

Objekt 0x60C0	Beschreibung	P 370[0] - CON_IP
-1	Nolp = Keine Interpolation	0
0	Lin = Lineare Interpolation	1
-2	SplineExtFF = Interpolation mit externer Vorsteuerung	2
-3	SplineII = Kubische Spline-Interpolation	3
-4	NonIPSpline = Kubische Spline-Approximation	4
-5	Cos = Kosinus Interpolation	5

Tabelle 12.16 Einstellungen Objekt 0x60C0

Bild 12.5 Struktur "Interpolated position mode"

Betriebsartspezifische Bits im Steuerwort

Bit	Name	Wert	Beschreibung
4	Enable IP Mode	0	Interpolierender Betrieb nicht aktiv
		1	Interpolierender Betrieb aktiv
8	Halt	0	Anweisung des Bit 4 ausführen
		1	Achse stoppen

Tabelle 12.17 Betriebsartspezifische Bits im Steuerwort

Betriebsartspezifische Bits im Statuswort

Bit	Name	Wert	Beschreibung
10	Target reached	0	Halt = 0: Position (noch) nicht erreicht Halt = 1: Achse bremst
		1	Halt = 0: Position erreicht Halt = 1: Achse in Geschwindigkeit 0
10	12 IP mode active	0	Interpolierender Betrieb nicht aktiv
12		1	Interpolierender Betrieb aktiv
14	ROT_0	0	Achse in Bewegung
		1	Achse im Stillstand Geschwindigkeit ist kleiner als Parameter P 0745 MON_REFWINDOW
15	Axis synchronized	0	Achse nicht synchronisiert
		1	Achse synchronisiert

Tabelle 12.18 Betriebsartspezifische Bits im Steuerwort

12.3.2 8 Cyclic synchronous position mode (nur EtherCAT)

In der Betriebsart "Cyclic Synchronous Position Mode" (Modes of operation = 8):

- empfängt der Antrieb zyklisch Positions-Sollwerte von der Steuerung.
- verrichtet der Antrieb eine Lageregelung.
- überträgt die Steuerung optional einen additiven Geschwindigkeits- und Drehmoment-Sollwert als Vorsteuerwert.

Das Gerät unterstützt folgende Objekte in der Betriebsart "Cyclic Synchronous Position Mode":

Objekt Nr.	Objekt Name	Objekt Code	Тур
0x607A	Target position	VAR	Integer32
0x60B1	Velocity offset	VAR	Integer32
0x60B2	Torque offset	VAR	Integer16

Tabelle 12.19 Unterstützte Objekte im "Cyclic synchronous position mode"

Torque offset (60B2h)

Bild 12.6 Überblick "Cyclic synchronous position mode"

Betriebsartspezifische Bits im Statuswort

Bit	Name	Wert	Beschreibung
10	Target position	0	Zielposition ignoriert
12		1	Zielposition als Eingang verwenden
13 Following error	E-llawing areas	0	Kein Schleppfehler
	Following error	1	Schleppfehler
		0	Achse in Bewegung
14	ROT_0	1	Achse im Stillstand Geschwindigkeit ist kleiner als Parameter P 0745 MON_REFWINDOW
15	Axis synchronized	0	Achse nicht synchronisiert
		1	Achse synchronisiert

Tabelle 12.20 Betriebsartspezifische Bits im Statuswort

12.3.3 9 Cyclic synchronous velocity mode (nur EtherCAT)

In der Betriebsart "Cyclic Synchronous Velocity Mode" (Modes of operation = 9):

- Überträgt die Steuerung zyklisch Geschwindigkeits-Sollwerte an den Antrieb.
- Verrichtet der Antrieb eine Geschwindigkeitsregelung.
- Überträgt die Steuerung optional einen additiven Geschwindigkeits- und Drehmoment Sollwert als Vorsteuerwert.

Das Gerät unterstützt folgende Objekte in der Betriebsart "Cyclic Synchronous Velocity Mode":

Objekt Nr.	Objekt Name	Objekt Code	Тур
0x60FF	Target velocity	VAR	Integer32
0x60B1	Velocity offset	VAR	Integer32
0x60B2	Torque offset	VAR	Integer16

Tabelle 12.21 Unterstützte Objekte im "Cyclic Synchronous Velocity Mode"

Betriebsartspezifische Bits im Statuswort

Bit	Name	Wert	Beschreibung
12	Target velocity	0	Zielgeschwindigkeit ignoriert
		1	Zielgeschwindigkeit als Eingang verwenden
14 R0		0	Achse in Bewegung
	ROT_0	1	Achse im Stillstand Geschwindigkeit ist kleiner als Parameter P 0745 MON_REFWINDOW
15	Axis synchronized	0	Achse nicht synchronisiert
		1	Achse synchronisiert

Tabelle 12.22 Betriebsartspezifische Bits im Statuswort

12.3.4 10 Cyclic synchronous torque mode (nur EtherCAT)

In der Betriebsart "Cyclic Synchronous Torque Mode" (Modes of operation = 10):

- Überträgt die Steuerung zyklisch Drehmoment-Sollwerte an den Antrieb.
- Verrichtet der Antrieb eine Stromregelung.
- Überträgt die Steuerung optional einen additiven Drehmoment-Sollwert als Vorsteuerwert.

Das Gerät unterstützt folgende Objekte in der Betriebsart "Cyclic Synchronous Torque Mode":

Objekt Nr.	Objekt Name	Objekt Code	Тур
0x6071	Target torque	VAR	Integer16
0x60B2	Torque offset	VAR	Integer16

Tabelle 12.23 Unterstützte Objekte im "Cyclic synchronous torque mode"

Bit	Name	Wert	Beschreibung
12	Target torque	0	Zielmoment ignoriert
		1	Zielmoment als Eingang verwenden
14	ROT_0	0	Achse in Bewegung
		1	Achse im Stillstand Geschwindigkeit ist kleiner als Parameter P 0745 MON_REFWINDOW
15	Axis synchronized	0	Achse nicht synchronisiert
		1	Achse synchronisiert

Tabelle 12.24 Betriebsartspezifische Bits im Statuswort

12.4 Externe Geschwindigkeits-/Drehmoment Vorsteuerung

In den Betriebsarten "Cyclic Synchronous Position Mode" (CSP, Kapitel "12.3.2 8 Cyclic synchronous position mode (nur EtherCAT)" auf Seite 81) oder "Cyclic Synchronous Velocity Mode" (CSV, Kapitel "12.3.3 9 Cyclic synchronous velocity mode (nur EtherCAT)" auf Seite 82):

- Überträgt die Steuerung optional externe Vorsteuerwerte für die Geschwindigkeit und das Drehmoment.
- Dazu die interne Vorsteuerung des Antriebs umschalten.

Folgende Tabellen zeigen relevante Einstellungen:

Objekt Nr.	Objekt Name	Datentyp	Normierung
0x60B1	Velocity offset	Integer32	Gemäß der Normierung für Drehzahlen (CiA402 Factor Group)
0x60B2	Torque offset	Integer16	In [‰] bezogen auf Motor-Nennmoment in Objekt 0x6076, d.h. ein Wert von 1000 entspricht dem Motor-Nennmoment.

Tabelle 12.25 CiA402 Objekte für die externe Vorsteuerung

Parameter	Funktion	Wert	
P 0375 – CON_ IP_SFFScale	Skalierung Drehzahl-Vorsteuerung	0 – 100 % bezogen auf den Vorsteuerwert	
P 0376 – CON_ IP_TFFScale Skalierung Drehmoment-Vorsteuerung		0 – 100 % bezogen auf den Vorsteuerwert	
P 0379 – CON_ Umschaltung der Vorsteuerquellen und spezielle Sollwert Formate		Siehe einzelne Subindizes	
Subindex 0	Position high resolution	0 = 32Bit Positions-Sollwert (Default)	
Subindex 1 Quelle Drehzahl-Vorsteuerwerte		0 = Interne Vorsteuerung (Default) 1 = Externe Vorsteuerung	
Subindex 2 Quelle Drehmoment-Vorsteuerwerte		0 = Interne Vorsteuerung (Default) 1 = Externe Vorsteuerung	

Tabelle 12.26 MSD Servo Drive Geräteparameter

Interpolationsarten

Die Interpolationsart über den Parameter P 0370 CON_IP einstellen.

Kontrolle der Vorsteuergrößen im Moog DriveAdministrator 5

Es gibt 2 Arten die gesendeten externen Vorsteuergrößen im MSD Servo Drive zu überprüfen:

- 1. Die Objekte zur Vorsteuerung finden Sie als Geräteparameter im Sachgebiet CANopen/EtherCAT
- 2. Mit dem internen Oszilloskop erfassen Sie die Größen nref_Ext (externe Geschwindigkeitsvorsteuerung) und mref_Ext (externe Drehmoment-vorsteuerung).

13 "Emergency messages"

13.1 Allgemein

"Emergency messages":

- Liefern Informationen zu Fehlern und Störungen in einem Netzwerk oder in den dazugehörigen Teilnehmern (Servoreglern).
- Haben eine hohe Priorität.

Bit-Belegung "Emergency message":

Byte	0	1	2	3	4	5	6	7
Bit:	0 7	8 15	16 23	24 .	39	40 47	48.	63
Profil	Gerä	te Profil Ci	A402			Servoregler		
Fehler	Emerger Cod CiA	ncy Error e It. 402	Error Register (Object 1001 h)	Fehler- nummer	Fehlerort	Betri (in	iebsstundenz vollen Stund	ähler en)

Tabelle 13.1 Emergency message

In der "Emergency message" entscheidende Bytes für eine Fehler-Diagnose:

- Byte 3 Fehlernummer (zeigt ein Fehler-Ereignis)
- Byte 4 Fehlerort (zeigt die Fehler-Ursache)

Fehler im Feldbussystem, z.B. falsche Konfigurationen, Feldbusstörungen oder andere, zeigt der Servoregler durch den **Fehlercode 0xFF00 h.**

Hinweise:

In der MSD Servo Drive - Geräte Hilfe finden Sie:

 Eine Liste der "Error codes" mit den entsprechenden "Emergency messages" und Maßnahmen zur Abhilfe.

Eine detaillierte und allgemeine Erklärung zu den "Emergency messages" finden Sie in der CiA402.

13.2 Fehlerquittierung

Methoden, um Gerätefehler zu quittieren über:

- Das Objekt 6040 h, Steuerwort Bit 7, flankengesteuert ("Eine Liste "Fehlermeldungen mit Abhilfemaßnahmen" finden Sie in der "MSD Servo Drive - Geräte Hilfe".").
- 2. Den Steuereingang mit programmierter Resetfunktionalität.
- 3. Die Steigende Flanke an der Steuerklemme (Hardwarefreigabe ENPO).
- 4. Die beiden Taster unter der 7-Segmentanzeige des Servoreglers.
- 5. Die PC-Benutzersoftware Moog DRIVEADMINISTRATOR.
- Schreiben des Werts "1" in den Parameter P 0153 / Objekt x 2099 MPRO_DRV-COM_FaultReset (über Moog DRIVEADMINISTRATOR oder die Feldbussysteme).

13.3 Fehlerquittierung über das Feldbussystem

Die gängigste Methode der Fehlerquittierung ist die "Fehlerquittierung über das Feldbussystem". Dazu:

• Eine steigende Flanke im Parameter **P 2208[0] MPRO_402_Controlword** im **Objekt 6040 h**, Bit 7 triggern. Näheres im Kap. "11.3.1 Objekt 6040h-Steuerwort" auf Seite 85.

Folgende "Emergency Message" signalisiert die Fehlerquittierung:

ID	Datenbytes	Beschreibung
Emergency	00 00 00 00 00 00 00 00 00	"Emergency message" Fehlerquittierung

Tabelle 13.2 Fehlerquittierung

Ist die Fehlerursache behoben:

• Verlässt der Servoregler den Fehlerzustand.

Ist die Fehlerursache nicht behoben:

• Geht der Servoregler nach der Fehlerquittierung durch die "Emergency Message" wieder in den Fehlerzustand.

13 "Emergency messages"

13.4 Fehlerquittierung über den Moog DriveAdministrator

- Fehlerursache eingrenzen anhand der **Moog DriveAdministrator 5** Fehlermeldung (siehe Fehlermeldung **Moog DriveAdministrator** oder Fehlerhistorie).
- Fehlerursache beheben.
- Fehler über Gerätestatusmaske rücksetzen.

HINWEIS:

Eine Liste "Fehlermeldungen mit Abhilfemaßnahmen" finden Sie in der "MSD Servo Drive - Geräte Hilfe".

14 Technologiefunktionen

14.1 Touch Probe

Die Touch Probe Funktion erfasst Positionen des Antriebs in Abhängigkeit folgender Eingangssignale:

- Digitaler Eingang ISD05.
- Digitaler Eingang ISD06.
- Nullimpuls.

Mit dem Parameter **P2285 "Touch probe function selector"** wählt man zwischen verschiedenen Implementierungen, z.B.:

- CiA402 Implementierung.
- Herstellerspezifische Implementierung (BECK) mit Abbildung aller Latchwerte auf **Objekt 60BA h.**
- Herstellerspezifische Implementierung (SPECIFIC) mit Abbildung der Werte auf den entsprechenden Objekten 60BA h, 60BB h, 60BC h und 60BD h.

14.1.1 Touch Probe Implementierung nach CiA402

- Um die Touch Probe Funktion "Implementierung nach CiA402" zu nutzen, den Parameter P2285 "Touch probe function selector" auf 1 = "CiA402(1)" stellen.
- 2. Um Signale mit beiden digitalen Eingängen ISD05 und ISD06 zu erfassen, die Parameter **P0106 + P0107 "MPRO_Input_FS_ISD0x"** als PROBE(15) konfigurieren. Die Parameterbeschreibungen finden Sie in der Onlinehilfe Geräte, unter "Funktionsselektor digitale Eingänge".

Abschließend folgende Objekte in die Prozessdaten mappen:

Name	Wert	
RxPDO	0x60B8 Touch probe function	
	0x60B9 Touch probe status 0x60BA Touch probe pos1 pos value	
TxPDO	alternativ: • 0x60BB Touch probe pos1 neg value • 0x60BC Touch probe pos2 pos value • 0x60BD Touch probe pos2 neg value	

Tabelle 14.1Objekt RxPDO und TxPDO: Touch Probe function

Über das **Objekt 0x60B8 h "Touch Probe Function"** das zu triggernde Signal einstellen. Verfügbare Einstellungen:

- Trigger mit Touch Probe 1 (digi. Eingang ISD05) auf steigende/fallende Flanke.
- Trigger mit Touch Probe 2 (digi. Eingang ISD06) auf steigende/fallende Flanke.
- Trigger auf Encoder-Nullimpuls, steigende Flanke.

Bit	Funktion
0	Messpunkt 1 aktivieren
1	Messpunkt 1 Dauerbetrieb
2	Messpunkt 1 Nullimpuls (Messung startet nur mit Nullimpuls)
3	-
4	Messpunkt 1 Freigabe-Latch an positiver Flanke (auch für Encodernullsignal verwenden)
5	Messpunkt 1 Freigabe-Latch an negativer Flanke
6	-
7	-
8	Messpunkt 2 aktiviert
9	Messpunkt 2 Dauerbetrieb
10	Messpunkt 2 Nullimpuls (Messung startet nur mit Nullimpuls)
11	-
12	Messpunkt 2 Freigabe-Latch an positiver Flanke (auch für Encodernullsignal verwenden)
13	Messpunkt 2 Freigabe-Latch an negativer Flanke
14	-
15	-

Tabelle 14.2 Touch Probe Latch Control object: 60B8 h

Das **Objekt 0x60B9 h** liefert den Status der Touch Probe Funktion.

Registriert der Servoregler ein aktiviertes Signal vom **Objekt 0x60B8 h**, setzt das Touch Probe Statuswort das entsprechende Bit.

Bit	Funktion
0	Messpunkt 1 aktiviert
1	Messpunkt 1 speichert positiven Flankenwert
2	Messpunkt 1 speichert negativen Flankenwert
3	-
4	-
5	-
6	Messpunkt 1 speichert positiven Flankenwert (nur Dauerbetrieb. Bit schaltet, wenn der Latchstatus wechselt)
7	Messpunkt 1 speichert negativen Flankenwert (nur Dauerbetrieb. Bit schaltet, wenn der Latchstatus wechselt)
8	Messpunkt 2 aktiviert
9	Messpunkt 2 speichert positiven Flankenwert
10	Messpunkt 2 speichert negativen Flankenwert
11	-
12	-
13	-
14	Messpunkt 2 speichert positiven Flankenwert (nur Dauerbetrieb. Bit schaltet, wenn der Latchstatus wechselt)
15	Messpunkt 2 speichert negativen Flankenwert (nur Dauerbetrieb. Bit schaltet, wenn der Latchstatus wechselt)

Tabelle 14.3 Touch Probe Latch Status object: 60B9 h

Zeitliches Ablaufdiagramm

Folgendes zeitliches Ablaufdiagramm zeigt am Beispiel des Messtasters ISD05 und der

zugehörigen Bits im Touch Probe Steuerwort und Statuswort eine Messung

- im Single Trigger Modus und
- im Continuous Trigger Modus.

• Continuous Trigger Mode (60B8 h, Bit 1 = 1 or Bit 9 = 1)

"Continouos Trigger Modus"

Entsprechend gilt der zeitliche Ablauf für die übrigen konfigurierbaren Signale.

14.1.2 Herstellerspezifische Touch Probe Implementierung

- Um die Funktion "herstellerspezifische Implementierung" zu nutzen, den Parameter P 2285 Touch probe function selector auf
 - 2 = "BECK2" oder
 - **3** = "SPECIFIC(3)" stellen.
- Um Signale mit beiden digitalen Eingängen ISD05 und ISD06 zu erfassen, den Parameter P0106 + P0107 MPRO_Input_FS_ISD0x als "PROBE(15)" konfigurieren.

Die Parameterbeschreibungen finden Sie in der MSD Servo Drive - Geräte Hilfe, unter "Funktionsselektor digitale Eingänge".

Abschließend folgende Objekte mappen oder mit SDO lesen oder schreiben:

Name Wert		
RxPDO	RxPDO 0x60B8 Touch probe function	
	0x60B9 Touch probe status 0x60BA Touch probe pos1 pos value	
TxPDO	alternativ: • 0x60BB Touch probe pos1 neg value • 0x60BC Touch probe pos2 pos value • 0x60BD Touch probe pos2 neg value	

Tabelle 14.4 Objekt RxPDO und TxPDO: Touch Probe function

Mit dem **Objekt 0x60B8 h "Touch probe function"** festlegen, auf welche Flanke des Signals getriggert wird:

- 1. fallende Flanke
- 2. steigende Flanke
- 3. beide Flanken.

Die Bits 0 - 4 in "Objekt Touch Probe Function" aktivieren (flankengesteuert) die entsprechenden Funktionen.

Die Bits 8 - 11 in "Objekt Touch Probe Status" erfassen und steuern die gespeicherten Funktionen.

Beachten:

Nach Ankunft des konfigurierten Signals, neue Messung starten!

Start der Messung - entsprechendes Bit rücksetzen und erneut setzen.

Bit	Wert (bin)	Wert (hex)	Beschreibung
0	0000 0000 0000 0001	xx01	Enable external latch 1 (positive rise) - digital input ISD05
1	0000 0000 0000 0010	xx02	Enable external latch 1 (negative rise) - digital input ISD05
2	0000 0000 0000 0100	xx04	Enable external latch 2 (positive rise) - digital input ISD06
3	0000 0000 0000 1000	xx08	Enable external latch 2 (negative rise) - digital input ISD06
4	0000 0000 0001 0000	xx10	Enable internal latch C (positive rise) - Encoder zero pulse
5-7	-	-	reserviert
8-12	0000 0001 0000 0000	01xx	Read external latch 1 (positive rise) - digital input ISD05
	0000 0010 0000 0000	02xx	Read external latch 1 (negative rise) - digital input ISD05
	0000 0011 0000 0000	03xx	Read external latch 2 (positive rise) - digital input ISD06
	0000 0100 0000 0000	04xx	Read external latch 2 (negative rise) - digital input ISD06
	0000 0101 0000 0000	05xx	Read internal latch C (positive rise) - Encoder zero pulse
13-15	-	-	reserviert

Tabelle 14.5Objekt 0x60B8 h: Touch probe function

Das Objekt 0x60B9 h liefert den Status der Touch Probe Funktion.

Registriert der Servoregler ein aktiviertes Signal vom **Objekt 0x60B8 h**, setzt das Touch Probe Statuswort das entsprechende Bit (0 - 4).

Bit	Wert (bin)	Wert (hex)	Beschreibung
0	0000 0000 0000 0001	xx01	External latch 1 valid (positive rise)
1	0000 0000 0000 0010	xx02	External latch 1 valid (negative rise)
2	0000 0000 0000 0100	xx04	External latch 2 valid
3	0000 0000 0000 1000	xx08	External latch 2 valid
4	0000 0000 0001 0000	xx10	Internal latch C valid (positive rise)

Tabelle 14.6 Objekt 0x60B9 h: Touch Probe status

Bit	Wert (bin)	Wert (hex)	Beschreibung
5-7	-	-	reserviert
	0000 0001 0000 0000	01xx	Acknowledge value external latch 1 (positive rise)
	0000 0010 0000 0000	02xx	Acknowledge value external latch 1 (negative rise)
8-11	0000 0011 0000 0000	03xx	Acknowledge value external latch 2 (positive rise)
	0000 0100 0000 0000	04xx	Acknowledge value external latch 2 (negative rise)
	0000 0101 0000 0000	05xx	Acknowledge value internal latch C (positive rise)
	0001 0000 0000 0000	1xxx	reserviert
12-15	0010 0000 0000 0000	2xxx	reserviert
	0100 0000 0000 0000	4xxx	reserviert
	1000 0000 0000 0000	8xxx	reserviert

Tabelle 14.6 Objekt 0x60B9 h: Touch Probe status

Die gespeicherte Position wird nach dem Setzen der Bits 8 – 11 im Statuswort, je nach **P 2285** Touch probe function selector, in das **Objekt 0x60BA h, 0x60BB h, 0x60BC h oder 0x60BD h** geschrieben.

Zeitliches Ablaufdiagramm

Zeitliches Ablaufdiagramm einer Messung am Beispiel des Messtasters ISD05 und der zugehörigen Bits im Touch Probe Steuerwort und Statuswort:

Entsprechend gilt der zeitliche Ablauf für die übrigen konfigurierbaren Signale.

14.2 Rundtischfunktion

Zur Konfiguration der Rundtischfunktion folgende Objekte verwenden:

Objekt	Objekt Name	Objekt Code	Тур
0x607B h	Position range limit	ARRAY	Integer32
0x60F2 h	Positioning option code	VAR	Unsigned16

Tabelle 14.7Objekte für Rundtischfunktion

Für die Rundtischfunktion das Objekt 0x60F2 h "Positioning option code"

abweichend von der nach CiA402 festgelegten Normierung verwenden.

Bit 6 und 7 beachten (siehe Tabelle):

Wert (hex)	Bedeutung
0x00	Wie Linear
0x40	Drehrichtung links
0x80	Drehrichtung rechts
0xC0	Wegoptimiert

Tabelle 14.8Bitbelegung Objekt 0x60F2

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 90

15 Weiterführende Dokumentation

Moog-Dokumentation	ldNr. / Dateifor- mate	Ablage
MSD Servo Drive Compact - Betriebsanleitung	CA97555-002 / PDF	
MSD Servo Drive Einachssystem - Betriebsanleitung	CA65642-002 / PDF	
MSD Servo Drive Mehrachssystem - Betriebsanleitung	CA97554-002 / PDF	https://www.moogsoftwaredownload.com/msd.htm
MSD Servo Drive Mehrachssystem Power Supply Unit - Betriebsanleitung	CA97556-002 / PDF	
MSD Servo Drive - Geräte Hilfe	CB40859-002 / PDF und HTML	

Tabelle 15.1 Moog-Dokumentation

Weiterführende Feldbus-Dokumentationen	Ablage
CiA® CiA301 (V 4.2.0): CANopen application layer and communication profile	
CiA® CiA402: CANopen device profile for drives and motion control (Rev. V 2.0)	www.can-cia.com
EtherCAT Communication specification Version 1.0 2004	www.ethercat.org
EtherCAT Indicator specification Proposal V0.91 2005	www.ethercat.org
Normen der Reihe IEC/EN 61158 (-1 bis -6-x): Industrial communication networks – Fieldbus specifications	siehe: www.beuth.de
Weitere Informationen zum Feldbussystem CANopen	www.can-cia.com
Weitere Informationen zum Feldbussystem EtherCAT	www.ethercat.org

 Tabelle 15.2
 Weiterführende Feldbus-Dokumentationen

MOOG Id.-Nr.: CA65647-002 Stand: 03/2020

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 92

16 Glossar

Moog DriveAdministrator 5	PC-Software von Moog zur (Erst-)Inbetriebnahme und Prozessdiagnose der Geräte der MSD Servo Drive-Familie
Elektronisches Geräte- datenblatt – EDS-Datei	Wird im "CANopen-Master" (Steuerung) installiert und dient der Einbindung von MSD Servor Drives in das CANopen-Gerätenetzwerk (Seite 91)
MSD	MSD Servo Drive: Einachssystem - Gruppe der MSD Servo Drive-Geräte (Nennströme 4 - 450 A), die an das AC-Netz angeschlossen werden und eine Achse betreiben. Mehrachssystem - Gruppe der MSD Servo Drive-Geräte (Nennströmen 4 - 170 A), die aus DC-gespeisten Achsmodulen und darauf abgestimmte Versorgungseinheiten besteht. Compact - Kleinstes Mitglied der MSD Servo Drive-Familie (Nennströme 2 - 16 A). Die Geräte werden an das AC-Netz angeschlossen und betreiben eine Achse.
ESI (xml)- Gerätebeschreibungs- datei	Dient der Einbindung von Servoreglern in das EtherCAT-Gerätenetzwerk. Übermittelt Daten, Eigenschaften und Funktionalitäten des Feldbussystems dem "EtherCAT-Master" (Seite 91).
Zustandsmaschine	Sie beschreibt die Übergänge der verschiedenen Systemzustände. Ein Zustandsüber- gang wird durch ein definiertes Ereignis, wie z. B. eine Steuersequenz oder das Setzen eines Eingangs, ausgelöst.

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 94

17 Stichwortverzeichnis

Symbole

6-Kanal Oszilloskop 29, 35

А

Absolute Positionierbewegungen	74
Absolute Positionierung	79
Additiver Drehmoment-Sollwert	83
Allgemeine Information	59
Allgemeines	. 7
Änderungen an den Parametern der Factor Group	66
Anschlüsse der Option POWERLINK 16, 24,	25
Application Layer	56
Ausgangsselektoren "MPRO_Output_FS_OSDxx"	68
Axis synchronized	84

В

Baudrate	20
Begrenzungen im U/f Betrieb	76
Berechnung der wichtigsten Factor Group Parameter	65
Betriebsartabhängige Bits im Statuswort	78
Betriebsart "Cyclic Synchronous Position Mode"	84
Betriebsart "Cyclic Synchronous Velocity Mode"	84
Betriebsarten CiA402	73
Betriebsarten mit Profilgenerierung im Antrieb	73
Betriebsartspezifische Bits im Statuswort 75, 79, 81, 82, 83,	84

Betriebsartspezifische Bits im Steuerwort 70, 72, 75, 76, 79	, 81
Betriebsartspezifische Funktionen (Operation mode)	59
Bewegungsprofil	69
Bitbelegung Objekt 0x60F2	90
Bitkombinationen	63
Bitkombinationen der DRIVECOM-Zustandsmaschine	62
Bits des Steuerworts	69
Bits für den Gerätezustand "Statuswort"	71
Bits im Statuswort	, 71

С

CAT-5e-Kabel	27
Change set immediately	75
CiA402	64
CiA402-Geräteprofil	77
CiA402 Implementierung	87
CiA402 kompatible Betriebsarten	73
CiA402 Objekte für die externe Vorsteuerung	84
Cockpit 29,	35
Cyclic synchronous position mode 59, 70, 72, 73,	81
Cyclic synchronous torque mode 59, 70, 72, 73,	83
Cyclic synchronous velocity mode 59, 70, 72, 73,	82

D

Data Link Layer	55
DEVICE CONTROL COMMANDS	70
Device controlling	59
Digitale Eingänge	66
DIP-Schalter	17

MOOG Id.-Nr.: CA65647-002 Stand: 03/2020

Disable operation70Disable voltage70Distributed Clocks - Verteilte Uhren56Download-Bereich29, 35, 79

Ε

E/A-Abbild	66
EIA/TIA-568A	26
EIA/TIA-568B	26
Eigentumsschaden 15, 23, 2	27
Eingangsfrequenz	19
Einheiten und Normierungen	64
Elektronisches Gerätedatenblatt – EDS-Datei	29
Emergency	55
Emergency Dienst	55
Emergency messages	85
Emergency Telegram	85
Enable IP Mode	81
Enable operation	70
Enable voltage	69
EoE - Ethernet over EtherCAT	56
Erstinbetriebnahme und Optimierung der Softwarefunktionen	
und Regelkreise	35
ESI_Datei - EtherCAT Slave Information	56
EtherCAT-Netzwerkmanagement (NMT)	57
EtherCAT Protokoll	14
Externe Geschwindigkeits-/Drehmoment Vorsteuerung 8	84

F

Factor Group	64
Fahrprofil des Antriebsreglers	73
Fallende Flanke	89
Fault	71
Fault reset	70
Fehlerquittierung	85
Feininterpolation	80
Feldbus-Option	
PROFIBUS	7
PROFIBUS Feldbusoptionskarte	7 24
PROFIBUS Feldbusoptionskarte	7 24 35
PROFIBUS Feldbusoptionskarte	7 24 35 75
PROFIBUS Feldbusoptionskarte	7 24 35 75 87
PROFIBUS	7 24 35 75 87 89
PROFIBUS Feldbusoptionskarte	7 24 35 75 87 89 66

G

Gerätesteuerbefehle	70
Gerätesteuerung und Zustandsmaschine	59
Geschwindigkeits-Sollwert	77
Gültigkeit des Benutzerhandbuchs	. 7

Н

H18 LED (rot)	16
H19 LED (grün)	16
Haftungsausschluss	8
Hardwarefreigabe	27

Hardwarefreigabe ENPO), 36
Heartbeat-Funktion	. 51
Herstellerspezifische Implementierung (SPECIFIC(3))	. 87
Herstellerspezifisches Bit	. 72
Home offset	. 79
Homing attained	2, 79
Homing error	2, 79
Homing function	. 78
Homing methods	. 79
Homing mode	2, 78
Homing mode Bits im Statuswort	. 79
Homing mode Bits im Steuerwort	. 79
Homing operation start	. 79

Implementierte CiA402-Funktionalität	
Inbetriebnahme	
Internal limit active	
Interpolated position mode	59, 70, 72, 73, 80
Interpolation data record	
Interpolationsarten	
Interpolation sub mode select	
Interpolation time period	
Interpolieren	
IP mode active	

Κ

Kabeltyp	19
Konfiguration	35
Kontrolle der Vorsteuergrößen im Moog DriveAdministrator 5	84

L

Latchwerte	87
Leistungsversorgung	72
Lineare Interpolation	80

Μ

Mailbox 55
Mandatory
Manufacturer specific
Maßnahmen zur Sicherheit 11
Max. profile velocity 77
Max slippage error 72
Messpunkt 1 87, 88
Messpunkt 2
Modes of operation
Modes of operation display 70
Moog DriveAdministrator 5
Moog PLC-Programm
mref_Ext (externe Drehmomentvorsteuerung) 84
MSD Servo Drive / MSD Servo Drive Compact Geräteparameter

Ν

88
75
16
9
74
71
84
79

0

Objekt 0x60B8 Touch probe function	87, 89
Objekt 0x60B9 Touch probe status	89
Objekt 60FDh – Digitale Eingänge	36, 68
Objekt 60FE - Digitale Ausgänge	68
Objekt 6040h-Steuerwort	69
Objekt 6041h-Statuswort	71
Objekte für Rundtischfunktion	90
Operation enabled	71
Operation mode specific	71
Option codes	63
OSI-7-Schichtenmodell	55

Ρ

35
37
37
15
39
34
35
71
39
7
39
50
8
55
7

Position actual value
Position high resolution
Positioning option code
Position range limit
Positiver Flankenwert
Process Data (CiA301)
Profile acceleration
Profile deceleration
Profile position mode 59, 70, 72, 73, 74
Profile position mode Bits im Statuswort
Profile position mode Bits im Steuerwort
Profile velocity
Profile velocity mode 59, 70, 72, 73, 77
Projektverwaltung
Prozessdaten (PDO)

Q

Quelle Drehmoment-Vorsteuerwerte	84
Quelle Drehzahl-Vorsteuerwerte	84
Quick stop 70	, 71
Quick stop deceleration 59, 73, 74	, 77

R

Rampengröße	77
Ready to switch on	71
Referenzfahrt Methoden	79
Referenzfahrttyp	79
Relative Positionierbewegungen	74

Remote	71,	, 72
ROT_0	, 81,	84
Rundtischfunktion		90
RxPDO	87,	89

S

S5 Drehkodierung	16
S6 Drehkodierung	16
Sachschäden	8
Schnellhalt	72
SDO Information Service	56
Serieninbetriebnahme	, 35
Set of setpoints	73
Setpoint acknowledge	, 75
Shutdown	70
Sicherheit	11
Sicherheits- und Warnhinweise	12
Single setpoint	73
Skalierung Drehmoment-Vorsteuerung	84
Skalierung Drehzahl-Vorsteuerung	84
Software position limit	74
Sollwertselektor	69
Sollwertübertragung von einem Host Computer	75
Spannungswelligkeit	19
Speed	72
Status der Touch Probe Funktion	, 89
STATUS des Controllers	71
Statuswort CiA402	71
Steigende Flanke	89

Steilheit der Rampen	73
Steuerwortselektor	69
Stromaufnahme	19
Struktur der Betriebsart	, 77
Struktur Interpolated position mode	80
Struktur Profile position mode	74
Struktur Profile velocity mode	78
Switched on	71
Switch on	70
Switch on disabled	71

Т

Target position	, 81
Target position ignored	72
Target reached	, 81
Target torgue ignored	72
Target torque	, 84
Target velocity	, 82
Target velocity ignored	72
Technologiefunktionen	87
Timing-Parameter	, 37
Torque offset	, 84
Touch Probe	87
Touch Probe Funktion " Implementierung nach CiA402"	87
Touch Probe Latch Control object: 60B8h	87
Touch Probe Latch Status object: 60B9h	88
Trigger auf Encoder-Nullimpuls	87
Trigger mit Touch Probe	87
TxPDO	, 89

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT 100

U

Überblick "Cyclic synchronous position mode"	81
Überblick "Cyclic synchronous torque mode"	83
Überblick "Cyclic synchronous velocity mode"	82
Übertragungs- geschwindigkeit	20
Umschaltung der Vorsteuerquellen und spezielle Sollwert Formate	84
Unterstützte Objekte im "Cyclic synchronous position mode"	81
Unterstützte Objekte im "Cyclic synchronous torque mode"	83
Unterstützte Objekte im "Cyclic synchronous velocity mode"	82
Unterstützte Objekte im "Interpolated position mode"	80

\vee

Velocity actual value		77
Velocity encoder factor	59, 73,	77
Velocity mode		76
Velocity mode (U/F Betrieb)	59, 73,	76
Velocity offset	81, 82,	84
Vermögensschäden		. 8
Voltage enabled	71,	72
Vorsteuerwerte		84

W

Warning	
Weiterführende Feldbus-Dokumentationen	, 14
Wellenabschlusswiderstand - Busabschluss	
Werkseinstellung	20, 31, 32, 33, 38, 52
www.can-cia.com	, 14
www.ethercat.org	

Х

X32	18
xml – Gerätebeschreibungsdatei	35

Ζ

Zielgruppe	. 7
Zustand "Operation enable"	73
Zustandsmaschine	93
Zustandsmaschine (State machine)	59
Zyklische Betriebsarten, Profilgenerierung in der Steuerung	80
Zykluszeit der Sollwerte im IP Mode	69

KOOG Id.-Nr.: CA65647-002 Stand: 03/2020 SCHAUEN SIE GENAU HIN.

Moog-Lösungen sind weltweit erhältlich. Weitere Informationen erhalten Sie auf unserer Webseite oder von der Moog-Niederlassung in Ihrer Nähe.

Australien +61 3 9561 6044 Service +61 3 8545 2140 info.australia@moog.com service.australia@moog.com

Brasilien +55 11 3572 0400 info.brazil@moog.com service.brazil@moog.com

China +86 21 2893 1600 Service +86 21 2893 1626 info.china@moog.com service.china@moog.com

Deutschland +49 7031 622 0 Service +49 7031 622 197 info.germany@moog.com service.germany@moog.com

Frankreich +33 1 4560 7000 Service +33 1 4560 7015 info.france@moog.com service.france@moog.com

Grossbritannien +44 (0) 1684 858000 Service +44 (0) 1684 278369 info.uk@moog.com service.uk@moog.com

Hong Kong +852 2 635 3200 info.hongkong@moog.com Indien +91 80 4057 6666 Service +91 80 4057 6664 info.india@moog.com service.india@moog.com

Irland +353 21 451 9000 info.ireland@moog.com

Italien +39 0332 421 111 Service 800 815 692 info.italy@moog.com service.italy@moog.com

Japan +81 46 355 3767 info.japan@moog.com service.japan@moog.com

Kanada +1 716 652 2000 info.canada@moog.com

Korea +82 31 764 6711 info.korea@moog.com service.korea@moog.com

Luxemburg +35 2 +40 46 401 info.luxembourg@moog.com Niederlande +31 252 462 000 info.thenetherlands@moog.com service.netherlands@moog.com

Russland +7 831 713 1811 Service +7 831 764 5540 info.russia@moog.com service.russia@moog.com

Schweden +46 31 680 060 info.sweden@moog.com

Singapur +65 677 36238 Service +65 651 37889 info.singapore@moog.com service.singapore@moog.com

Spanien +34 902 133 240 info.spain@moog.com

Südafrika +27 12 653 6768 info.southafrica@moog.com

Türkei +90 216 663 6020 info.turkey@moog.com

USA +1 716 652 2000 info.usa@moog.com service.usa@moog.com

MOOG

Moog GmbH Hanns-Klemm-Straße 28 D-71034 Böblingen Telefon +49 7031 622 0 Telefax +49 7031 622 100

www.moog.com/industrial drives-support@moog.com

Moog ist ein eingetragenes Warenzeichen der Moog, Inc. und ihrer Niederlassungen. Alle hierin aufgeführten Warenzeichen sind Eigentum der Moog Inc. und ihrer Niederlassungen. Alle Rechte vorbehalten. © 2020 Moog GmbH.

Technische Änderungen vorbehalten.

Der Inhalt unserer Dokumentation wurde mit größter Sorgfalt zusammengestellt und entspricht unserem derzeitigen Informationsstand.

Dennoch weisen wir darauf hin, dass die Aktualisierung dieses Dokuments nicht immer zeitgleich mit der technischen Weiterentwicklung unserer Produkte durchgeführt werden kann.

Informationen und Spezifikationen können jederzeit geändert werden. Bitte informieren Sie sich unter drives-support@moog.com über die aktuelle Version

Id.-Nr.: CA65647-002, Rev. 2.0

Stand: 03/2020

Gültig ab Firmware-Version: 124.25

Die deutsche Version ist die Originalausführung der Betriebsanleitung.

MSD Servo Drive Benutzerhandbuch CANopen/EtherCAT

102